碧波液压网 欢迎你,游客。 登录 注册

基于粗糙集神经网络的刀具磨损监测的研究

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
3.12 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
26

简介

液压导航网
针对多传感器刀具磨损监测系统输入维数较多、神经网络结构复杂、收敛速度慢等缺点,提出了粗糙集和遗传算法优化神经网络的模型.该模型首先利用粗糙集理论的属性约简对输入数据进行处理,从而达到减少神经网络输入维数、简化神经网络结构的目的.然后通过遗传算法优化神经网络的初始权值和阈值,以提高神经网络的收敛速度,避免神经网络陷入局部极值点.将该模型应用到刀具磨损监测,通过对声发射信号和电流信号进行处理,提取特征向量值,将特征值先通过自组织神经网络进行连续属性离散化,再通过粗糙集理论进行属性约简,最后通过遗传算法优化的BP神经网络进行识别,取得了很好的效果,证明了此模型的有效性和可行性.
标签: 神经网络
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码: 看不清?点击更换

最新评论