碧波液压网 欢迎你,游客。 登录 注册

多子阵声信号融合下轴向柱塞泵故障智能识别方法

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
4.76 MB
文件类型
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
59

简介

液压导航网
利用非接触式声阵列构造了多个子阵,建立了轴向柱塞泵故障噪声信号监测模型,并基于卷积神经网络-支持向量机(convolutional neural network-support vector machine,CNN-SVM)组合模型提出了故障智能识别方法。首先,运用子阵列平移的信号模型进行信号滤波,结合小波变换(continuous wavelet transform,CWT)生成时频图样本,通过多子阵合成RGB图片作为故障声信号样本;其次,用SVM替代Softmax分类器,建立了基于CNN-SVM的多子阵声信号融合的故障故障识别模型;最后,设计了柱塞故障、配流盘故障、斜盘故障和回程盘故障等4种故障并进行了实验验证。结果表明,所提方法在运行噪声环境下的分类准确率达到了97.5%,相较与单通道时频样本,其准确率提高了1.1%。
标签:
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码: 看不清?点击更换

最新评论