基于LSTM-Informer模型的液压支架压力时空多步长预测
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
3.42 MB
文件类型
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
目前多步液压支架压力预测大多为单步液压支架压力的累计预测,单步累计次数越多,累计误差就越大,影响预测精度。针对该问题,提出了一种基于长短时记忆(LSTM)-Informer模型的液压支架压力时空多步长预测方法。采用卡尔曼滤波消除液压支架压力数据中的振动噪声后,在工作面端部和中部各选取相邻的5台液压支架压力数据建立2个时空数据集(数据集1和数据集2),并对时空数据进行标准化预处理。将时空数据输入LSTM模型提取时空特征,并将提取的时空特征输入Informer模型的编码器,经过位置编码后利用多头概率稀疏自注意力来关注压力序列的变化特征,经过最大池化和一维卷积消除最终输出特征图的冗余组合。利用多头概率稀疏自注意力来关注压力序列的变化特征,将Informer模型的解码器改为全连接层,得到液压支架压力的预测结果。实验结果表明与基于门控循环单元(GRU)、LSTM和Informer模型的预测方法相比,基于LSTM-Informer模型的预测方法在预测6,12,24步长液压支架压力时的均方根误差(RMSE)和平均绝对误差(MAE)均最小;其中基于数据集1预测的6步长液压支架压力的RMSE分别降低了41.63%,49.74%,11.85%,MAE分别降低了41.75%,50.00%,12.00%;基于数据集2预测的6步长液压支架压力的RMSE分别降低了48.15%,59.86%,19.88%,MAE分别降低了49.87%,54.90%,13.16%。相关论文
- 2019-07-29基于摆缸关节的液压机械臂运动学及工作空间分析
- 2021-10-07基于机器人操作系统的液压机器人自主导航系统设计与实现
- 2024-11-18基于响应面法的液压机械臂结构优化
- 2021-09-16液压驱动机器人速度控制的研究
- 2024-11-18基于空间力系的液压支架顶梁承载特性感知分析
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。