碧波液压网 欢迎你,游客。 登录 注册

多策略改进的乌燕鸥算法及应用

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
1.03 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

乌燕鸥算法(STOA)存在收敛缓慢、稳定性差、收敛精度低等问题,鉴于此,提出一种多策略改进的乌燕鸥算法(MISTOA)。首先,为增强初始种群的多样性,采用Cat混沌映射对STOA算法种群进行初始化。其次,将自适应权重因子和高斯函数改进了算法的迁徙位置更新方式,增强了算法的全局搜索能力。同时,结合自适应权重因子和邻代交叉学习策略改进了算法的攻击位置的更新方式,增强了算法跳出局部最优的能力。最后,采用高斯变异策略对乌燕鸥最优个体进行扰动,提高算法的全局搜索与局部搜索之间的平衡能力。利用7个测试函数和主梁轻量化设计对MISTOA算法收敛性能和工程实际应用能力进行了验证。结果表明与其他5种先进的算法,MISTOA算法收敛性能更优,稳定性较好和鲁棒性较强。MISTOA算法可实现桥式起重机主梁质量减重率约为20.76%,优化结果优于已有的方法,因此,MISTOA算法可以高效地处理复杂的非线性约束的现实问题。
标签:
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论