多策略改进的乌燕鸥算法及应用
乌燕鸥算法(STOA)存在收敛缓慢、稳定性差、收敛精度低等问题,鉴于此,提出一种多策略改进的乌燕鸥算法(MISTOA)。首先,为增强初始种群的多样性,采用Cat混沌映射对STOA算法种群进行初始化。其次,将自适应权重因子和高斯函数改进了算法的迁徙位置更新方式,增强了算法的全局搜索能力。同时,结合自适应权重因子和邻代交叉学习策略改进了算法的攻击位置的更新方式,增强了算法跳出局部最优的能力。最后,采用高斯变异策略对乌燕鸥最优个体进行扰动,提高算法的全局搜索与局部搜索之间的平衡能力。利用7个测试函数和主梁轻量化设计对MISTOA算法收敛性能和工程实际应用能力进行了验证。结果表明与其他5种先进的算法,MISTOA算法收敛性能更优,稳定性较好和鲁棒性较强。MISTOA算法可实现桥式起重机主梁质量减重率约为20.76%,优化结果优于已有的方法,因此,...
Lévy飞行和热交换的混沌乌燕鸥算法及应用
为解决乌燕鸥算法对抗局部最优能力和寻优能力较低的问题,提出了一种混合Lévy飞行和热交换混沌乌燕鸥算法(LTCSTOA)。首先,采用Hénon混沌映射对算法种群初始化,保证算法种群多样性。其次,采用混合Lévy飞行和热交换算法的搜索策略,并在不同算法搜索阶段,引入自适应因子γ和自适应惯性权重,提高了算法的跳出局部区域的能力和收敛精度。最后,采用热交换算法对最优乌燕鸥个体进行扰动,提高算法的全局寻优能力。选用7个测试函数验证了不同改进策略的算法有效性,仿真结果表明与其他算法相比,LTCSTOA算法收敛性能更优,具有较高的收敛精度、稳定性和鲁棒性。将LTCSTOA算法应用于二级斜齿圆柱齿轮传动机构可靠性轻量化设计,优化结果表明与原设计相比,LTCSTOA算法获得的体积和重合度分别降低了约为51.86%和18.6%,实现了齿轮传动机构轻量化设计的目的。
Lévy飞行的正余弦乌燕鸥混合算法及应用
为解决标准乌燕鸥算法(STOA)易陷入局部最优和收敛速度慢等缺点,提出一种混合正余弦算法(SCA)和Lévy飞行的自适应乌燕鸥算法(SLSTOA)。采用正余弦算法的搜索方式,同时采用非线性递减自适应正弦因子,改进乌燕鸥算法的攻击搜索方式,来增强STOA算法的全局与局部探索能力。乌燕鸥个体和最优个体通过Lévy飞行策略进行变异,来增加种群多样性和扩大搜索空间,以达到提高跳出局部最优和全局探索能力。与四种先进的元启发式算法比较,SLSTOA算法性能通过6个基准测试函数进行评价,结果表明,相比其他四种元启发式算法,SLSTOA算法精度高、稳定性好和鲁棒性强。同时为验证SLSTOA算法的科学性与实用性,将其应用于解决32t/22.5m桥式起重机主梁结构优化设计中。
-
共1页/3条