碧波液压网 欢迎你,游客。 登录 注册

基于机器学习回归模型的UHPC抗压强度预测研究

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

简介

以超高性能混凝土(UHPC)组成原材料中的水泥、矿粉、硅灰、钢纤维、减水剂、消泡剂和水的用量为特征,28 d抗压强度为标签建立了数据集,并采用随机森林回归(RFR)、支持向量机回归(SVR)和多层感知机回归(MLPR)3种机器学习回归模型对数据集进行了训练和预测。结果表明:MLPR模型的拟合优度最高;RFR模型中对UHPC的28 d抗压强度影响相对较大的3个因素为硅灰、水泥和水的用量;SVR模型和MLPR模型的预测值均落在5%置信区间内,回归效果均较理想。
标签:
点赞   收藏

相关论文