麻雀搜索算法优化的外啮合齿轮泵泄漏量预测
预测齿轮泵泄漏量的变化趋势有助于定量分析其性能退化过程。变分模态分解(Variational Modal Decomposition, VMD)方法对齿轮泵原始泄漏量数据进行变分模态分解,得到本征模态函数IMF,提出一种结合麻雀优化算法(Sparrow Search Algorithm, SSA)和长短期记忆神经网络(Long-Short Term Memory, LSTM)的模型,建立VMD-SSA-LSTM模型预测齿轮泵泄漏量的变化情况,并对每一个分量进行单独预测,最后将预测结果进行叠加,获得完整的预测结果。通过对比不同时间段预测结果可知,VMD-SSA-LSTM模型较单一的LSTM模型预测结果的平均相对误差最高可减小25.2%,能够完成对泄漏量的有效预测。研究结论可为齿轮泵性能衰退的定量预测提供理论支持。
基于HP滤波与ARIMA-GARCH模型的柱塞泵泄漏量预测
柱塞泵关键摩擦副磨损造成的泄漏增大是其性能退化的主要原因,预测泄漏量的变化趋势有助于定量分析柱塞泵性能退化过程。该研究使用HP(Hodrick-Proscott)滤波对柱塞泵泄漏量进行分解,结合滤波后得到的趋势数据具有非线性及方差异性的特征,基于时间序列方法建立HP-ARIMA-GARCH(HP-Auto Regressive Integrated Moving Average-Generalized Autoregressive Conditionally Heteroscedastic)模型预测柱塞泵泄漏量变化。通过不同时段泄漏量预测结果比较可知,根据HP滤波分解后得到的趋势数据序列建立的HP-ARIMA-GARCH模型较传统时间序列模型预测结果的平均相对误差最高可减小5.42个百分点,能够实现对泄漏量的有效预测。研究结论可为柱塞泵性能退化的定量预测提供理论参考。
-
共1页/2条