变转速变载荷工况下的齿轮智能故障诊断
针对变转速变载荷工况下的齿轮故障检测、识别和分类问题,提出一种基于最大重叠离散小波包变换和人工神经网络的智能故障诊断新方法。研究自相关谱峭度图中的最大重叠离散小波包变换,并采用它将复杂的齿轮故障振动信号分解为频带和称为节点的中心频率。推导出每个节点的平方包络的自相关,以便计算每个节点在每个分解层次上的峭度,减少了非周期性脉冲和噪声的影响。将上一步得到的特征矩阵作为径向基函数神经网络的输入,从而实现齿轮状态的自动分类。并在变转速变载荷(16种)工况下对健康状态和5种不同类型齿轮故障的齿轮箱进行了具体测试分析。结果表明:该方法可以更好地提取特征信息,为齿轮故障诊断定位合适的解调频带,提高了所有工况下齿轮故障诊断的准确率。
-
共1页/1条