RV减速器参数化建模及熔丝堆积快速成型
RV减速器作为工业机器人关节运动精密的传动机构,对机器人完成目标任务有非常重要的作用。以摆线轮作为研究对象,介绍RV减速器的传动原理以及结构组成。通过对标准理论齿廓摆线轮曲线参数方程的研究,简化参数方程表达式,并用SolidWorks进行了参数化建模。采用熔丝堆积快速成型的方法制造的摆线轮三维实物样件,表面精度和样件尺寸精度高,有利于后期为RV减速器各个零部件的研发提供可行性的帮助。
RV传动压力角的影响因素及变化规律研究
根据摆线轮与针轮的相对运动关系,导出摆线轮齿廓方程及RV传动压力角的计算公式,运用Matlab编程,仿真分析偏心距、针齿分布圆半径、针齿半径等设计参数及等距修形量、移距修形量、转角修形量等修形参数对压力角的影响规律。结果表明RV传动同时参与啮合的齿号、单齿啮合压力角及多齿啮合平均压力角均呈周期性变化;压力角随偏心距的增大而减小,随针齿分布圆半径的增大而增大,偏心距对压力角的影响程度大于针齿分布圆半径;针齿半径、等距修形量和移距修形量对压力角影响微小,转角修形量对压力角无影响。研究结果为RV传动的参数优化及传力性能改善提供了理论依据。
RV减速器摆线针轮传动啮合区间研究
针对RV减速机传动过程中,其啮合点数无法通过现有设备进行检测的问题。提出首先建立RV减速机关键部位的接触刚度,进而推导出其对应的扭转刚度;其次,根据整机扭转刚度和局部扭转刚度推导出摆线轮与针轮组件间的总啮合刚度,然后使用RV减速机综合试验台检测RV减速机在各负载扭矩下的整机扭转刚度;最后,以摆线轮与针轮间的总扭转刚度值为参考,结合实验实际检测结果,从扭转刚度结果中选取最接近的刚度值作为实际啮合区间,并通过有限元分析验证了理论分析的正确性。
RV减速器摆线轮齿面展成磨削模型构建及影响因素分析
摆线轮齿面加工精度是影响RV减速器运动性能的关键因素,而根据齿面误差检测数据进行机床磨削参数的反调修正更是摆线轮制造过程的重要环节。通过摆线轮展成磨削原理分析,明确了砂轮与摆线轮之间的复杂运动关系,建立了摆线轮齿面展成磨削运动关系模型,并借助于齿轮啮合理论和空间坐标转换原理,推导了以机床磨削参数为变量的摆线轮理论齿面及法矢的数学表达,为检测后齿廓误差的反调修正提供理论依据。根据构建的摆线展成磨削模型,讨论了主要磨削参数对齿面误差的影响规律。最后,与采用摆线生成原理得到的摆线轮齿廓进行了对比验证,证明了该齿廓方程表达及其建立方法的正确性。它不仅可以为摆线轮加工误差检测提供必需的理论数据,而且对摆线轮机床磨削参数的反调修正以及摆线轮齿面精度改善具有重要的理论意义。
高精度RV减速器摆线轮修形理论研究
将二阶对数修形量沿法线方向叠加至RV减速器摆线轮的理论齿廓,推导出对数修形后的摆线轮齿廓方程。通过控制齿廓修形底数、齿廓修形系数,可达到控制齿廓曲线不同位置的修形量。提出的二阶对数齿廓修形方法与传统修形方法的不同点是:摆线轮主要参与啮合工作段齿廓更加逼近理论齿廓;二阶对数齿廓修形可使摆线针轮副重合度更大,传动误差曲线对称性更好,使摆线轮传动更加平稳。该修形方法具有优越性,为高精度RV减速器摆线轮的修形设计提供了新思路。
RV减速器摆线轮齿廓的逆向主动修形方法
齿廓修形设计是RV减速器摆线轮设计制造过程中的关键环节,但目前摆线轮齿廓修形设计未考虑其齿廓误差和运动精度对齿廓形状的影响关系,为此,提出一种综合考虑齿廓误差和传动误差影响的摆线轮齿廓逆向主动修正方法。通过对RV传动摆线针轮进行轮齿接触分析,以抛物线修形方法中的修形系数ac、常数项系数b、失配参考点处啮合相位φ0角作为齿廓修形变量,以传动误差最小为目标函数,建立齿廓逆向修形数学模型,最终求解得到满足RV传动精度要求的最佳齿廓。该方法综合考虑了摆线齿廓形状变化与啮合特性和传动精度之间的交互影响,同时,在保证啮合特性和运动精度情况下,可获得更加符合工程实际的摆线轮设计齿廓,保证了RV减速器摆线针轮副的装配工艺性,对RV传动性能预控、齿廓修形质量及运动精度改善提供理论和技术支撑。
摆线齿廓修形后的共同啮合齿数计算
R V 3 2 0减速器是工业机器人专用减速器.摆线齿廓的修形在考虑弹性变形的基础上可以达到有多齿嗤合的目的.文中对其进行分析计算,得出修形后的实际共同啮合齿数.
基于PTC-Creo的摆线轮参数化模型设计
在分析RV减速器中摆线轮的轮廓曲线方程的基础上,结合摆线针轮啮合的基本参数,利用PTC-Creo对一齿差摆线针轮运动中的摆线轮轮廓曲线进行参数化建模,并根据啮合原理验证模型的准确性,为摆线轮的检验制造提供了可靠依据。
摆线针轮传动齿面啮合应力有限元分析
以摆线针轮减速器为研究对象,利用赫兹接触理论计算摆线轮和针轮的齿面接触强度,并验证是否满足强度要求。基于摆线针轮传动原理,合理地建立摆线轮与针轮的有限元模型,对所建模型进行摆线轮和针轮的动态接触分析。通过计算不同转矩下的接触应力最大值并与极限应力作对比,得出有限元模型能承受的最大转矩。分析表明,基于有限元法进行的摆线轮与针轮的动态接触分析符合实际传动过程中摆线轮的受力与变形情况,对摆线轮的设计优化及摆线针轮传动特性的研究有一定的参考价值。
内啮合摆线齿轮泵摆线轮齿廓参数化设计分析
利用齿轮啮合原理推导出了摆线齿轮的齿廓曲线方程,讨论了两种齿根过渡曲线的处理方法,并利用Visual Basic6.0在AutoCAD平台上实现了齿轮完整齿廓曲线的参数化绘制,这对于进一步分析齿轮的啮合特性及力学性能具有重要的意义。