VMD-模平方阈值与PNN相结合的齿轮故障诊断
针对故障齿轮振动信号的非平稳和调制特性,提出了在变分模态分解(VMD)-模平方阈值降噪的基础上利用概率神经网络(PNN)进行齿轮故障诊断的方法。首先,利用VMD将原始振动信号分解为若干个本征模态函数分量,采用模平方阈值方法对各分量处理后并重构;然后,提取重构信号的峭度和均方根作为特征值组成特征向量;最后,将特征向量输入PNN实现故障类型识别。通过齿轮故障试验分析,将其与基于EMD-模平方阈值、LMD-模平方阈值和EEMD-模平方阈值的BP神经网络故障诊断方法相比较。结果表明,该方法能有效的提取特征信息,故障诊断准确率高达96.875%,证明了所提方法的可行性和有效性。
基于模平方阈值-FastICA的滚动轴承降噪方法研究
针对小波阈值降噪时硬阈值和软阈值存在的连续性差和小波系数高频损失的问题,以及经典独立分量分析(independent component analysis,简称ICA)方法降噪时的欠定问题,提出了模平方阈值与Fast ICA结合的联合降噪方法。首先将采集的单通道信号进行模平方阈值降噪处理,然后将降噪后信号与原振动信号组成输入矩阵进行Fast ICA降噪,最后对降噪后信号进行包络谱分析,实现滚动轴承特征提取和故障诊断。仿真和实验结果分析表明:该方法能使振动信号的峭度值增大,有效地滤除噪声,凸显故障特征信息,证明了该方法的有效性。
-
共1页/2条