旋转机械故障类型识别的神经网络方法研究
广义回归神经网络(Generalized Regression Neural Network,GRNN)和概率神经网络(Probabilistic Neural Network,PNN)都是基于径向基函数的神经网络类型。广义回归神经网络通常用来实现函数逼近,而概率神经网络主要用于模式分类问题的研究。两者在机械设备故障诊断中均有广泛的应用。根据两种神经网络原理建立模型,对比分析广义回归神经网络和概率神经网络在旋转机械设备故障类型识别方面的优缺点。结果显示,两种神经网络在故障类型识别方面均取得了不错的效果,而概率神经网络相比广义回归神经网络而言,能应用更少的特征得到正确的结果。同时,将这两种神经网络得到的结果同BP神经网络和RBF神经网络得到的结果相比,发现GRNN神经网络和PNN神经网络具有更高的准确率和鲁棒性。
基于改进GWO-GRNN的管道焊缝三维重构测量
为提高双目相机不同位姿下焊缝的三维重构测量精度,提出一种基于立体视觉图像误差补偿的管道焊缝三维重构测量方法。采用改进灰狼算法(IGWO)优化广义回归神经网络(GRNN)补偿焊缝三维重构图像点的坐标误差。采用混沌映射、非线性收敛因子和最优记忆保存思想对GWO算法进行改进,通过8个标准测试函数进行仿真验证;利用优化后的GRNN模型对图像点坐标误差进行预测和补偿,计算三维坐标重构出焊缝点云,三维测量焊缝的焊宽、余高和长度。试验结果表明:该模型在双目相机不同的位姿状态下都能较准确地实现焊缝的三维重构,焊缝的三维测量相对误差在0.9%以内。
基于广义回归神经网络的流量矩阵估计
研究大尺度IP骨干网络流量矩阵估计,通过使用广义回归神经网络来捕捉流量矩阵特征,将流量矩阵估计描述成马氏距离下的最优化过程,能成功克服流量矩阵估计的病态特性,获得精确的估计值。仿真结果表明,该估计算法具有更高的估计精度和显著的性能改善。
基于CVFOA-GRNN的飞机液压系统的故障诊断研究
针对飞机液压系统故障具有随机波动性和非线性的特点,基于仿真获取故障和正常数据建立液压系统故障诊断模型。因果蝇优化算法(FOA)寻优易陷入局部最优,改进果蝇优化算法的初始值散列方式和寻优步长,构建混沌变步长果蝇优化算法。通过改进的果蝇优化算法优化广义回归神经网络(GRNN),提高GRNN的非线性学习能力,最终构建CVFOA-GRNN(chaotic variable step size fruit fly optimization algorithm GRNN)模型。实验表明相比FOA-GRNN、GRNN和BP模型,本文模型在性能上更稳定、收敛更快,应用于液压系统故障诊断准确度更高,具有实用价值。
机床热误差非线性组合预测模型研究
在精密及超精密加工过程中,数控机床热误差是影响加工精度的一项重要误差源,最经济和有效地减少热误差的方法是热误差补偿技术。针对热误差补偿预测模型的预测精度问题,提出一种非线性组合预测模型。该预测模型利用灰色关联度方法对单项预测模型进行筛选,对筛选出的单项预测模型基于不同优化准则进行线性组合,通过广义回归神经网络对该线性组合模型进行非线性组合,得到非线性组合预测模型。误差预测结果表明:对比典型的BP神经网络预测模型,非线性组合预测模型的预测精度更高,最大误差由4.78μm减小到0.7μm。
基于混合特征和CFOA-GRNN的行星齿轮箱故障诊断研究
针对行星齿轮传动系统典型故障的识别,提出一种基于信号混合特征和混沌果蝇优化算法-广义回归神经网络(CFOA-GRNN)的故障诊断方法。计算信号的几种典型时域统计特征,并通过小波包分解获取信号频域能量特征,得到信号混合特征向量作为广义回归神经网络(GRNN)的输入;采用混沌扰动改进的果蝇优化算法对GRNN进行参数寻优,构建最优诊断模型;利用采集的行星齿轮箱实验台不同工况数据进行实验和对比。结果表明:所提方法能够有效识别不同工况下齿轮箱的不
-
共1页/6条