对基于恢复时间的剪稀流变模型的进一步探讨及其对squalane油品流变特性的模拟
本文作者前期基于球-杆变形后恢复到原状态的时间,建立了新的形式较简单的流变模型,并模拟了黏度较高的聚合油PAO 650的摩擦系数曲线.本文中将该模型的应用范围进行了推广,模拟了黏度较低的squalane油品的流变特性.把该流变公式应用到点接触热流变弹流润滑的数学模型中,通过与试验测得的摩擦系数的比较确定了使用该模型时squalane油品的待定参数值,进而得到了点接触热流变弹流润滑的完全数值解.结果表明:解得的压力、膜厚和温度的变化规律均符合预期,且摩擦系数曲线与试验结果整体吻合性较好.新流变模型对高、低黏度的油品均能得到合理的流变特性曲线,说明作者的基于恢复时间的流变模型具有一定的正确性和可应用性.另外,由新模型计算得到的squalane油品的剪应力曲线呈现出一近似水平段,这也在一定程度上解释了流变试验文献中多次提到的...
表面改性对滑动轴承弹流润滑的影响
考虑滑移边界条件,建立了极限剪应力模型和线接触弹流润滑模型,推导了润滑剂界面滑移速度,并修正了流体润滑Reynolds方程,针对界面改性后滑动轴承的润滑状态进行了探究。首先,分析了对轴瓦和轴颈界面均进行改性处理后,轴承润滑状态在整个弹流润滑接触区的变化;其次,分别研究了仅对轴瓦或者轴颈做改性处理的影响;最后,探究了界面改性对轴承摩擦因数的影响,并讨论了摩擦因数随载荷、速度的变化。结果表明,在弹流润滑的条件下,同时对轴瓦和轴颈进行表面改性处理时,油膜会在入口区形成凹陷,在出口区形成坍塌;仅对轴颈界面进行改性处理时,油膜会在整个接触区形成凹陷,对应的压力也会随之增加;相反,仅对轴瓦界面进行改性处理时,油膜厚度减小,压力降低;表面改性处理后,摩擦因数降低,并随载荷、速度的增大而减小。
-
共1页/2条