碧波液压网 欢迎你,游客。 登录 注册

轴承故障稀疏编码特征提取与多分类SVM识别

作者: 蓝雄 刘胜永 来源:机械设计与制造 日期: 2024-09-10 人气:156
为了准确识别滚动轴承故障状态,提出了基于稀疏编码器的自动特征提取方法和基于投票法多分类孪生支持向量机的故障类型识别方法。稀疏自动编码器通过对输入信号编码过程,自动学习隐藏在输入信号中的特征量,无需任何先验知识和专家经验。将投票法与孪生支持向量机相结合,提出了投票法多分类孪生支持向量机的故障模式识别方法,既发挥了投票法"民主决策精度高"的优势,同时具有孪生支持向量机训练速度快的优点。挑选了凯斯西储大学在10类故障状态下的实验数据进行验证,投票法多分类孪生支持向量机故障识别精度为99.40%,而使用神经网络故障识别精度为95.61%,比多分类孪生支持向量机降低了3.96%;投票法多分类孪生支持向量机训练时间为34.79s,而神经网络训练时间为89.76s,是多分类支持向量机的2倍以上。实验证明了投票法多分类支持向量机具有极...

滚动轴承故障检测深度卷积稀疏自动编码器建模研究

作者: 冯玉伯 丁承君 陈雪 来源:机械科学与技术 日期: 2020-12-12 人气:171
滚动轴承故障检测深度卷积稀疏自动编码器建模研究
针对机械设备故障诊断大多采用有监督学习提取故障特征,而有标签数据难以获取的现状,提出一种在稀疏自动编码器中嵌入卷积网络的深度神经网络。利用希尔伯特和傅里叶变换实现机械设备振动时间序列向Hilbert包络谱的转换,通过卷积网络中多组卷积核自动学习谱空间数据的不同特征,保证了特征提取的自动化、全面性和多样性,稀疏自动编码器搜索具有正交性数据特征的低维表示,并使得编码后的数据具有很强的聚类特性,实现设备的自动故障诊断。通过对滚动轴承振动信号进行分析实验,证明该方法在设备故障诊断中具有去标签化、自动化、鲁棒性等特点。

全矢深度学习在轴承故障诊断中的应用

作者: 陈超宇 陈磊 张旺 韩捷 来源:机械传动 日期: 2020-11-21 人气:110
全矢深度学习在轴承故障诊断中的应用
为了应对日趋庞杂的故障监测系统数据,针对单通道信号存在的信息遗漏以及传统智能诊断手工提取特征的复杂性和不通用性,提出了全矢深度学习滚动轴承智能诊断方法。首先,用全矢谱融合双通道的振动信号,得到全矢融合后的主振矢数据,克服了单通道振动信号信息不完整的缺点;然后,在此基础上构建全矢深度神经网络,结合稀疏编码和去噪编码算法,自适应地提取故障特征。最后,使用反向传播算法进行网络参数整体微调。试验结果表明,该方法能够自适应地提取更为有效的故障特征,提高了故障诊断准确率和稳定性,改善了传统方法的复杂流程。
    共1页/3条