轨道不平顺影响下高速列车齿轮传动系统的振动特性分析
为了分析高速列车齿轮传动系统在轨道不平顺激励影响下的振动特性变化规律,利用动力学软件SIMPACK建立包含齿轮传动系统的整车动力学模型,分别在大、小齿轮内部布置测点,进行无轨道不平顺和有轨道不平顺工况下的动力学仿真实验,获得高速列车时速250 km/h时大、小齿轮的振动加速度。对大、小齿轮横向、纵向和垂向振动加速度幅值进行频域分析,并对比分析了齿轮传动系统在有、无轨道不平顺工况的振动幅值、频谱分布。结果表明,由于轨道不平顺激励的影响,高速列车齿轮传动系统的横向、纵向和垂向振动加强,振动加速度均增幅明显,其中,垂向振动加速度变化幅值最大。齿轮传动系统的振动频率主要集中在0~400 Hz,小齿轮和大齿轮横向振动受轨道不平顺的影响规律一致,但小齿轮受到纵向振动的影响略小于大齿轮,小齿轮受到垂向振动的影响略大于...
齿轮系统动力学的理论体系
根据对国内外齿轮系统动力学研究成果的系统总结,阐述齿轮系统动力学理论的基本结构体系。说明齿轮动力学的发展过程;围绕动态激励、模型类型、建模和求解方法以及齿轮系统的固有特性、动态响应和动力稳定性等介绍齿轮系统动力学所涉及的基本问题,讨论该理论的主要工程应用的基础上,提出应进一步研究的方向与重点。
基于误差耦合补偿的多级齿轮传动系统传动精度研究
为有效且经济地提高多级齿轮传动系统的传动精度,建立了基于误差耦合补偿原理的多级齿轮传动系统传动精度模型;然后运用数值分析方法计算多级齿轮传动系统传动精度,分析求解出系统耦合传动精度值最小时各偏心误差对应的初相角;再利用蒙特卡洛法分别计算各构件随机装配和提高部分零部件加工精度等级两种情况下系统的传动精度;最后对比分析以上3种情况下的系统传动精度,结果显示,运用数值分析方法可提高多级齿轮传动系统的传动精度,验证了该方法的可行性和有效性。
-
共1页/3条