基于改进贝叶斯分类的电机轴承故障诊断系统研究
针对电机轴承故障诊断模型构建时间长、准确率不高的问题,提出一种基于改进贝叶斯分类的故障诊断方法。首先通过小波包变化、粗糙集及主成分分析方法分别构造原始故障特征集、降维后的故障特征集,再将原始故障特征集和降维后的故障特征集输入到改进贝叶斯分类模型中实现故障诊断,以此为基础设计一套交流发电机轴承故障诊断系统。最后以国内车辆车载电机轴承振动数据为依据,将改进贝叶斯分类方法和神经网络及最小二乘支持向量机方法作对比分析,结果表明:改进贝叶斯分类方法建模时间更短,故障诊断准确率更高。
-
共1页/1条