改进的量子遗传偏最小二乘特征选择方法应用
针对量子遗传偏最小二乘法在特征选择过程中,存在初始化种群粗糙和适应度函数复杂等问题,提出了一种新的特征选择方法——改进的量子遗传偏最小二乘法(Improved Quantum Genetic Algorithm Partial Least Square,IQGAPLS)算法。该算法根据求解问题的实际情况,赋予种群初始值。同时,设计了一种新的适应度函数,以减少计算量,并基于此适应度函数,提出了一种新的旋转角度更新公式,解决了其方向和大小确定困难的问题。将该算法应用于轴向柱塞泵故障信号的特征选择中。实验结果表明,IQGAPLS算法具有较少的计算量和较短的执行时间,选择出的特征包含更多的工作状态信息,从而提高了分类准确率。
基于量子遗传算法的轴向柱塞泵故障特征选择
为了进一步减少特征维数、缩短运算时间、提高分类正确率等,提出了一种基于量子遗传算法的轴向柱塞泵故障特征选择方法,该方法采用量子位进行染色体编码,利用量子门更新种群。首先,对轴向柱塞泵振动信号进行小波包变换,提取出原始信号和各个小波包系数的统计特征;然后,利用量子遗传算法从原始特征集中选择出最优特征集;最后,以神经网络为分类器(其输入为最优特征集),对故障进行诊断与识别。利用该方法对轴向柱塞泵正常、缸体与配流盘磨损和柱塞滑履松动三种状态的特征集进行选择,试验结果表明,与普通遗传算法相比,量子遗传算法可以更有效地减少特征维数,提高分类正确率。
-
共1页/2条