基于回声状态网络的挖掘机位置在线学习模型控制研究
挖掘机液压系统具有强烈的非线性,现有挖掘机控制普遍采用基于模型的控制方法,需要建立精确的挖掘机模型,成本过高且控制效果差。因此,提出了一种基于回声状态网络的液压挖掘机位置在线学习控制方法,建立了在线学习基本模型,该模型包含2个回声状态网络、1个学习目标的逆和1个基于学习目标逆生成的控制输入,在对其进一步优化后,提出了在线学习优化模型。以正弦信号为参考轨迹,对基础模型和优化模型进行了仿真研究,搭建了挖掘机控制试验装置,分别开展了单关节运动、多关节运动和实际挖掘运动实验,结果表明:采用在线学习控制方法后,挖掘机位置控制精度明显提高,其均方根误差降低占比超过50%,证明了所提出控制方法的性能和可行性。
一种基于INW-ESN的故障融合预测方法
针对传统方法对液压泵故障预测效果不佳的问题,提出了一种基于改进的Newman-Watts小世界-回声状态网络(improved Newman-Watts-echo state network,简称INW-ESN)的故障融合预测方法。首先,对回声状态网络(echo state network,简称ESN)储备池结构进行优化,建立INW-ESN基础预测模型,并重新定义邻接矩阵元素取值,以改善网络预测性能;其次,在此基础上建立故障融合预测模型,利用Dezert-Smarandache理论(Dezert-Smarandache theory,简称DSmT)将INW-ESN预测信息与液压泵性能退化模型信息进行融合,以提高预测精度;最后,通过对液压泵性能退化试验的应用分析,验证了该方法的有效性。
-
共1页/2条