基于机器视觉的3D打印异常诊断方法
为解决3D打印过程中出现的诸如堵头、断丝、翘曲等异常情况导致打印失败的问题,搭建检测平台并提出一种融合Xception的改进YOLOv5算法,完成异常实时检测,达到及时处理、提高打印成功率的目的。通过对YOLO算法头部、躯干部以及瓶颈块进行轻量化改进,提高识别帧率并减小参量;然后对输出部分进行改进,使特征相似的异常图像被收集后输入至Xception算法中,提升异常识别分类的准确率;最后利用Qt跨平台开发框架设计打印异常诊断系统人机交互界面软件。结果表明改进的融合算法在自建3D打印异常数据集中识别准确率为88.75%,较原YOLOv5算法提高3.22%,同时识别平均帧率为28帧/s,提高了40.0%,可以满足实际打印中对识别准确率及实时性的要求。
基于改进YOLOv5算法的地铁车辆转向架螺栓缺失检测
目前,地铁车辆的检修主要依赖于人工检测,不仅效率低,而且可能因漏检等原因造成严重的行车安全事故。因此提出了一种基于改进YOLOv5算法的地铁车辆转向架螺栓缺失检测算法。首先,在YOLOv5算法的骨干网络和特征提取网络中添加Ghost模块,轻量化网络结构,提升检测效率和速度;其次,采用改进的YOLOv5算法对螺栓进行定位训练,并插入CBAM注意力模块,增加网络对目标的关注度,从而获得良好的螺栓定位检测模型;最后通过模板匹配的方法,对比网络检测结果与正常转向架螺栓数量及分布,获得缺失螺栓数目与位置信息。实验结果显示,改进后的YOLOv5网络模型检测精度提升3.9%,模型参数量减少了近1/2,检测速度提升9 fps,螺栓缺失检测准确率为86.2%。因此,文中提出的改进YOLOv5算法的地铁车辆转向架螺栓检测模型满足螺栓缺失定位的检测任务要求,取得了良好的应用效果...
-
共1页/2条