基于变分模态分解与快速谱峭图的齿轮箱滚动轴承故障特征提取
针对齿轮箱的滚动轴承故障信号因噪声干扰,难以进行有效提取的问题,提出了基于变分模态分解与快速谱峭图相结合的轴承故障特征提取方法。首先,利用变分模态分解(Variational Mode Decomposition,VMD)将振动信号分解成若干个本征模态分量(Intrinsic Mode Function,IMF),通过相关峭度计算选取故障信息最突出的分量信号;然后,利用快速谱峭图自适应地确定带通滤波;最后,对滤波后的信号进行平方包络谱分析,提取出故障信息。通过公开数据分析和齿轮箱轴承故障实验,证明了该方法的有效性和可行性。
基于1-DCNN的行星齿轮箱故障诊断
传统的机器学习方法在行星齿轮箱故障诊断方面存在识别率低、特征提取操作繁琐等问题。为提高行星齿轮箱的诊断效率,提出基于一维深度卷积神经网络(One-dimensional deep convolutional neural network,1-DCNN)的故障诊断方法,将原始信号直接输入到网络中进行诊断。通过对行星齿轮箱行星轮5种故障信号进行训练验证,精度可达100%,且在诊断精度和效率上优于其他常用算法。
基于CYCBD和包络谱的滚动轴承微弱故障特征提取
针对在强噪声的干扰下,滚动轴承微弱故障特征难以有效地提取的问题,提出一种基于最大2阶循环平稳盲解卷积(Maximum Second-order Cyclostationarity Blind Deconvolution,CYCBD)和包络谱相结合的微弱故障特征提取方法。首先,由故障特征频率设置合理的循环频率集,使用CY-CBD对含有强噪声的微弱故障冲击信号进行降噪处理,增强信号中的周期性冲击成分;然后,对降噪信号进行Hilbert包络谱分析来识别故障特征频率。通过仿真和实验,结果证明,该方法能有效地提取被强噪声淹没的微弱故障特征。
功率谱估计在扫描隧道显微术中的应用
扫描隧道显微镜(简称STM)所采集到的隧道电流信号,不仅包含着表征样品的表面形貌和分子结构的有效信号,而且还隐含着整个扫描隧道显微系统的动态特性.针对STM采集的信号,运用短时傅立叶变换对其波形数据进行功率谱密度估计,对信号在频率域中的特征向量加以提取.结果表明:基于谱空间的特征向量,准确地分辨出了工频在信号中的干扰,也能有效地解释和分析STM系统的动态特性,进而认为存在一小阻尼系统对信号施以影响;此外,分析的结果可以为STM扫描过程的控制,诊断以及扫描图像的重建和解释提供有力的理论指导.
基于kNN优化算法的密封电子设备多余物定位技术
在密封电子设备的生产制造过程中,对多余物进行检测至关重要。微粒碰撞噪声检测法是我国军标规定的用于航天电子元器件多余物检测的方法。针对密封电子设备体积大和检测出的多余物位置难以确定的问题,使用参数优化的k邻近(kNN)算法对多余物进行定位。通过搭建定位实验系统和设计试件模型,得到多通道的多余物信号,提取性能优良的时域和频域特征作为kNN算法学习的数据集。采用网格搜索法寻找kNN算法最优的k值选择、距离度量和权重设置,然后采用参数优化的kNN算法分别建立平面与空间定位模型。实验结果表明,采用参数优化的kNN算法进行多余物定位,平面与空间定位精度分别达到81.18%和79.34%,有效提高了传统情况下的定位准确度。
基于多层降噪处理的轴承故障特征提取方法
针对滚动轴承振动信号的故障信息难以准确获取问题,提出一种新的基于多层降噪处理的轴承故障特征提取方法。所提方法首先依据小波包变换原理处理原始轴承信号,消除噪声干扰;变换后的振动信号用经验模态分解方法处理可得若干个IMF分量,计算所得分量与变换所得信号间的互相关系数,并依据相关系数准则筛选有用分量完成振动信号的重构;再通过自相关方法剔除重构信号中的混叠干扰信号,实现振动信号的多层降噪;最后对去噪后的重构信号解调处理,获取信号包络谱图并分析,得到所需故障特征。试验结果表明该方法能够有效地消除原始信号中的干扰和噪声,分离出清晰的故障振动信号并获取有用的故障特征。
基于CIELMD与RCMFE的往复压缩机轴承间隙故障特征提取方法
针对往复压缩机轴承间隙故障诊断振动信号强非平稳、非线性与特征耦合特性,提出基于复合插值包络局部均值分解(CIELMD)与精细复合多尺度模糊熵(RCMFE)特征提取方法。使用CIELMD方法分解不同轴承间隙故障信号,利用相关系数筛选包含主要故障信息的PF分量;通过RCMFE方法定量描述PF分量构成状态特征矩阵,为解决信息冗余问题,进一步使用文化基因算法优选矩阵中平均样本距离最大的元素,构成可分性良好的特征向量。往复压缩机轴承间隙故障模拟信号试验结果表明:该方法提取故障特征可分性强,故障识别准确率高。
基于Autogram的齿轮断齿故障特征提取方法
针对复杂生产背景下产生的强噪声淹没齿轮有效故障特征信息的问题,利用Autogram方法对其进行特征提取。该方法利用最大重叠离散小波包变换,对齿轮断齿故障振动信号进行不同层数分解处理,每层得到若干个信号,被称为“node”。为了更加全面地描述故障特征信息,对每个node进行包络谱的3种无偏自相关谱峭度求取,以便选取合适node作为信号源进行下一步分析。最后,对该信号源引入阈值处理,以便加强频谱分析的全面性,实现对齿轮断齿故障特征信息的有效提取。通过对比分析仿真和实测齿轮故障振动信号,验证了该方法的有效性。
基于振动时域特征的船用滚动轴承故障诊断方法
基于机器学习故障诊断方法,针对船用滚动轴承复合故障特征提取多样化的特点,提出一种以振动信号时域指标为特征的随机森林故障诊断方法。将振动时域信号进行清洗转换,构造5个量纲一化指标的衍生特征,并选取以决策树为基本分类器的随机森林算法建立训练模型;通过特征筛选、评估测试和模型优化得到较为理想的故障诊断分类模型;采用滚动轴承竞赛数据集进行模型仿真,并结合实际模拟8种船用滚动轴承故障状态。通过三向振动实验和算法建模,证明特征提取的科学性和故障诊断模型的有效性。结果表明:采用该方法,数据仿真诊断准确率为98.61%,实验诊断准确率为98.85%,且该方法在振动采集方向为轴向时诊断效果最优。
基于小波包分解与K-L变换的齿轮泵振动信号故障特征提取方法
针对齿轮泵故障成因复杂、模糊性强的特点,结合小波包分解与K-L变换,提出一种适用于支持向量机故障诊断的特征提取方法。通过小波包对样本故障振动信号进行分解得到特征向量,而后利用K-L变换处理得到新的特征向量集,达到降维去噪的目的。将处理后的特征向量集用于支持向量机的模型训练,分析结果表明:该方法能够有效提高故障模式识别准确率和识别效率。