基于差分非平稳Transformer的液压支架立柱压力预测
液压支架立柱压力预测是回采工艺决策的重要依据,也是确保围岩稳定的基础信息之一。然而,液压支架立柱压力虽然具有一定的规律性,却无法用简单的数学模型进行预测;且在回采过程中,支架不接顶、顶板破碎、传感器检测误差等带来大量的随机噪声,使得压力数据劣化为非平稳时间序列,给压力的预测带来的很大的困难。本文在Transformer基础上,提出一种差分非平稳Transformer模型,在Transformer的编码器和解码器中分别引入差分归一化和反归一化操作,以提升序列的平稳性。同时,在Transformer中采用去平稳注意力机制,计算序列元素之间的关联关系,以增强模型的预测能力。在真实的煤矿支架立柱数据集上的对比实验表明,本文提出的差分非平稳Transformer的预测效果达到0.674,表现明显优于LSTM、Transformer和非平稳Transformer模型。
基于PSO-LSTM-Attention算法的液压管路压力预测
在液压系统中,液压管路是实现压力传导功能的重要组成部分,其压力值的变化不容忽视。在环境误差等因素的影响下,液压管路的压力变化呈现非线性和不稳定性。为解决该问题,提出基于粒子群优化算法(PSO)改进的基于注意力机制(Attention)的长短期记忆神经网络(LSTM)的液压管路压力预测方案。用某飞机液压管路的压力检测值作为输入数据,实现液压管路某支路位置的压力预测,并完成预测结果的可视化。实验结果表明,该模型预测平均误差为1.78%,符合液压管路压力预测要求。
-
共1页/2条