基于电液混合储能的电动挖掘机动臂节能驱动系统特性
针对现有电动挖掘机采用多路阀控系统造成的能效低、电池装机容量大但续航时间短的不足,提出一种变转速双泵直驱液压挖掘机动臂系统。根据动臂液压缸面积比配置2个液压泵/马达的排量,实现液压缸流量匹配。采用液压蓄能器与超级电容进行混合储能,实现动臂重力势能的高效回收利用。分析所提系统的工作原理,建立系统多学科联合仿真模型,分析系统运行特性和能量特性。研究结果表明:双泵直驱挖掘机动臂系统具有良好的控制特性,速度运行平稳。与传统多路阀控系统相比,双泵直驱挖掘机动臂系统节能效果显著,蓄能器压力21 MPa和容积180 L时,重力势能回收效率为79.9%,能耗减少64.6%,进一步通过合理选择蓄能器工作压力和容积,双泵直驱动臂系统的节能效果可达到65%以上。
液压阀内高速流场仿真与实验分析
利用湍流模型及计算流体动力学(CFD)技术对液压阀流场内部流动情况进行了数值模拟,针对阀口附近压力梯度大、速度突变的特点,通过对该区的流体速度、压力分布及气穴噪声情况进行分析,结果得到了实验验证。发现由于流线转折和流体脱离而产生的低压区以及旋涡流动是阀内气穴(噪声)产生的根本原因。该研究对于建立基于流场仿真预测阀口气穴的方法,以及对液压元件的设计和气蚀、噪声控制都具有重要的参考价值。
《液压传动》教学新模式的研究与实践
液压传动是一门具有很强理论性和实践性的应用性课程,结合高等职业教育培养技术型、应用型人才的教学目的,从教学内容、教学方法和实验教学三个方面对课程进行了改革与尝试,经过近几年的教学实践,逐步形成了一种新的教学模式,教学效果良好,教学质量有明显提高。
磁场作用下磁流变液的挤压与拉伸特性
为研究磁流变液在不同磁场作用下的挤压与拉伸力学性能,建立了用于测试磁流变液挤压与拉伸特性的实验装置,并通过ANSYS/Multiphysics对此实验装置磁路的磁感应强度分布进行了仿真分析。利用此装置研究了磁流变液在不同外加磁场强度下的挤压和拉伸特性,并建立了拉伸屈服应力与剪切屈服应力之间的关系。挤压实验表明,磁流变液在挤压应变约为0.15时具有最小的压缩弹性模量;当挤压应变大于0.15时,挤压应力和挤压弹性模量与挤压应变表现为指数关系,且指数随着外加磁场的增大呈上升趋势。拉伸屈服应力约为剪切屈服应力的4倍,据此计算得到的剪切屈服应变角在13.8~16.9°,验证了物理模型对磁流变液剪切应力描述的合理性。
基于协同小波分析的声纳图像去噪研究
将基于协同小波去噪的方式运用于水下声纳图像的去噪处理中,并将去噪效果与几种传统的图像去噪算法进行了效果比较。实验结果证明,该算法在很好地去除声纳图像中的高斯白噪声、提高信噪比的同时,在图像的边缘特性及轮廓保留上也具有较大的优势。
液压阀内高速流场仿真与实验分析
利用湍流模型及计算流体动力学(CFD)技术对液压阀流场内部流动情况进行了数值模拟,针对阀口附近压力梯度大、速度突变的特点,通过对该区的流体速度、压力分布及气穴噪声情况进行分析,结果得到了实验验证。发现由于流线转折和流体脱离而产生的低压区以及旋涡流动是阀内气穴(噪声)产生的根本原因。该研究对于建立基于流场仿真预测阀口气穴的方法,以及对液压元件的设计和气蚀、噪声控制都具有重要的参考价值。
-
共1页/6条