一种小型空间反射镜支撑结构的设计与分析
为了确保成像质量,空间光学遥感器反射镜既要满足在重力和温度耦合的复杂工况下面形误差的要求,同时还应具有良好的动态特性。设计了一种圆形小型反射镜,并类比反射镜径向挠性安装原理设计其柔性支撑结构。采用CAE有限元分析软件对该反射镜的柔性支撑结构的参数进行了优化,最终确定了一种合理的柔性支撑结构。经过分析计算,该柔性支撑结构能满足在重力和温度耦合的复杂工况下反射镜面形误差小于λ/50(λ=0.6328μm)的要求,反射镜组动态特性良好,一阶模态大于280Hz。
小型反射镜中心支撑技术
所述空间遥感器反射镜的工作温度为18±15℃,要求反射镜在此复杂工况条件下满足设计要求。介绍了反射镜材料和支撑结构材料的选择;对反射镜的支撑方式、轻量化等方面进行了分析讨论;根据反射镜柔性支撑结构的设计原理,采用CAD/CAE工程软件进行了分析及优化,通过有限元法优化设计了一种反射镜中心支撑的柔性结构,在此温度变化范围内,反射镜面形误差变化量PV值小于λ/10、RMS值小于λ/40(λ=632.8 nm)。最后,通过力学环境实验测试反射镜面形变化量和反射镜组件模拟件的动态特性,证明该结构满足设计要求。
基于SiC材料的大长宽比长条型反射镜轻量化结构设计
介绍了一种大长宽比长条型反射镜的轻量化结构设计方法。讨论了反射镜的材料选择和轻量化结构形式,同时在轻量化设计过程中引入拓扑优化方法,以反射镜柔性变形为设计约束,以最小体积为设计目标,经过迭代计算得到最优结果。根据优化结果,建立反射镜的三维实体模型,并利用MSC.Patran软件建立反射镜的有限元模型,对影响反射镜自重变形的各项参数给出了详细的分析和讨论,包括径厚比的选择、支撑点位置、轻量化形式等,得到了各参数对反射镜面形精度的影响曲线。根据反射镜的加工工艺特点给出了一种合理的轻量化结构形式,轻量化率达到了70%,轻量化后反射镜的质量为12.5kg。面形误差的RMS值小于λ/50(λ=632.8nm),满足设计要求。
指向可变平面反射镜支撑方法研究
为了适应大口径、大视场的离轴光学系统结构的特殊性,要求装调过程中平面反射镜口径足够大且必须有大角度俯仰偏转的工作状态。介绍了直径为760mm的指向可变平面反射镜微晶玻璃材料的选取,探讨了反射镜的几种支撑方式,针对两种不同的柔性支撑方式通过CAD/CAE工程分析软件来对比,确定了一种有效的支撑方式,即采用中心定位和18点背部支撑的复合式支撑结构,有效地克服了重力和温度对镜面变形的影响。
宽温变环境的空间反射镜结构分析与研究
相机在从地面到太空的过程中,需要经历重力、温度、气压、辐射等多种环境因素的变化,而这些因素都可能导致空间相机分辨率下降、像质变坏、功能失效甚至系统破坏。所描述的系统工作于18±15℃的温度环境,要求光学反射镜在30℃温度变化范围内仍能正常成像。经优化设计,应用计算机仿真手段进行了静、动态及热特性的分析,提出了一种采用中心粘接结合Bipod柔性支撑形式,解决了在大跨度环境温度范围下的反射镜结构支撑问题。
大口径平面基准仪反射镜支撑技术
大口径平面基准仪是在大口径、大视场的空间光学遥感器光学系统装调过程中必须应用的基准工具,随着光学系统的口径和视场的不断增大,平面基准仪口径也不断增大,本文从满足大口径平面基准仪反射镜在复杂的工况下综合面形误差要求的角度出发,介绍了1000mm大口径平面基准仪反射镜及其支撑结构材料的选择,讨论了反射镜的柔性支撑结构的设计方法,并运用CAD/CAE工程分析软件进行分析及优化,应用有限元法优化出一种合理的反射镜柔性支撑结构。
-
共1页/6条