双角度光学粒子计数器标定研究
针对光学粒子计数器的标定对其测量精度的重要性,根据球形粒子的Mie散射理论对双角度光学粒子计数器的标定进行了研究,对标定过程中的一些现象进行了理论分析。通过对它们的研究以及对标定的分析可以对双角度光学粒子计数器测量数据的合理性进行判断,这对光学粒子计数器的研制和标定是很有意义的。
大气气溶胶粒子折射率虚部反演方法研究
提出了反演折射率虚部的方法.以光散射为原理的粒子计数器测量光学等效直径,其结果受折射率虚部的影响较大;以粒子飞行时间为原理的粒子计数器测量空气动力学直径,其结果不受折射率虚部的影响.利用两种仪器的测量结果受折射率影响的差异来反演大气气溶胶的折射率虚部,通过与其它独立的测量结果对比表明,该方法反演气溶胶折射率虚部是合理的.
双散射角光学粒子计数器的研制
为了实现同时测量气溶胶粒子的谱分布和折射率,研制了一种新的双角度光学粒子计数器(D-OPC),该计数器采用60°和110°双散射角系统对气溶胶谱分布进行测量。利用Mie散射理论定义敏感函数,选取两个最佳的散射角,使其既对折射率敏感又不线性相关。然后,利用气溶胶折射率对两个散射角系统敏感性的差异来反演气溶胶折射率。最后,利用该仪器对大气气溶胶谱分布以及折射率进行实际测量。与TSI公司黑炭仪和浊度计测量的吸收系数和散射系数对比表明,双散射角光学粒子计数器测量气溶胶折射率和谱分布结果合理,测量误差〈20%,可以满足同时测量气溶胶粒子谱分布和折射率的需要。
LED光源光学粒子计数器的研制
为了提高光学粒子计数器的测量性能,克服白炽灯和激光作光源带来的缺点,研制了一台光学粒子计数器。基于Mie散射原理测量粒子的粒径,以发光强度高、发光波长宽的LED为光源,具有白炽灯和激光作光源无法达到的使用寿命长和响应曲线单调的优点。与浊度计测量结果对比表明该仪器的测量误差在15%以内,测量结果合理。由于该仪器光源使用寿命是白炽灯的60倍,可以根据需要对测量粒径任意分道,所以该仪器适用于测量和研究大气气溶胶粒子谱分布。
激光光源粒子计数器响应曲线对粒子折射率敏感度及多值性的分析
采用激光作光源的光学粒子计数器(LOPC)克服了白炽灯作光源时使用寿命短、发光强度不稳定、需要经常标定的缺点,但激光波长的单一也带来了一些问题,如响应曲线对折射率敏感度的变化和多值性等问题。利用Mie散射理论,通过数值模拟实验,对L-OPC的这些问题进行了分析,提出了L-OPC实验样机的设计参数。
基于翼型凹变的叶片结构动力学性能优化方法研究
针对某分布式水平轴风力机叶片,首次提出于翼型吸力面上进行翼型凹变的结构改良,以额定工况时不降低叶片功率输出为前提,成功地将翼型凹变应用于叶片刚度、阻尼比和固有频率的有益改进。研究揭示,翼型向内侧凹变可较好地控制叶片吸力面上气流交汇的位置和影响范围,配合凹槽对汇聚流线的诱导效应,可在一定程度上减小气体流动的能量损失,进而提升叶片的气动性能。此外,翼型凹变可显著提升风轮1阶、2阶阻尼比3%~9%,提升叶片刚度值32%,同时可有效降低叶片最大位移和最大应变值分别为28%和19%。翼型凹变在风力机叶片设计中的成功应用,不仅可为翼型族的衍生提供了新的实现方法,同时可为叶片气动性能和结构动力学性能的兼优性开发提供新的实现途径。
动态入流对叶片气动性能和叶面压力分布影响的数值分析
基于稳定风、渐变风、阵风等入流方式,建立了不同变风阶段叶片气动载荷非稳态计算模型,研究了不同风速变化速率对叶片气动性能以及叶面压力分布的影响规律。研究结果表明,在相同风速下,不同风速变化率会对风轮输出转矩产生影响,且风的加速度越大,其影响越显著。同风速下的压力面渐变风压力小于稳定入流压力,且两种入流方式的压力差随展向位置逐渐增大,而吸力面上的压力分布差异较小,但压力变化梯度随展向位置却有明显不同。阵风入流中,在相同风速的阵风加速与阵风减速时刻,压力面、吸力面的压力分布差异较大,但其压差随叶片展向位置波动较小;在叶根到叶片展向位置0.7R处,阵风加速出力大于阵风减速;在0.7R处到叶尖位置,阵风减速出力效果相对更好。
-
共1页/7条