神经网络PID控制的液压驱动主动升沉补偿预测控制研究
为了提高船舶在海面上作业时补偿精度,采用BP神经网络PID控制方法,并对船舶升沉运动输出误差进行仿真。建立船舶主动升沉补偿系统简图,分析船舶升沉运动工作原理,给出液压缸驱动传递函数。引用BP神经网络算法,采用梯度下降法对BP神经网络加权值进行修正,通过学习速率来补偿控制系统输出误差,从而实现PID控制器参数在线调节。在受到不同负载影响状况下,采用MATLAB软件对船舶升沉运动补偿精度进行仿真,并且与PID控制补偿精度进行对比。结果表明:采用PID控制器,船舶升沉运动输出误差较大,控制系统反应速度较慢;而采用BP神经网络PID控制器,船舶升沉运动输出误差较小,控制系统反应速度较快,同时,随着负载质量的增加,输出误差就会增大。采用BP神经网络PID控制系统,响应速度快,补偿精度高,提高了船舶在海面上作业定位精度。
-
共1页/1条