变位非对称聚合物行星齿轮的瞬态热弹流润滑
为探究非对称齿廓的内啮合齿轮在变位情况下的热弹流润滑特性,用多重网格法对采用变位设计的非对称聚合物齿轮进行了瞬态热弹流润滑分析,比较了不同传动类型的变位齿轮的弹流润滑特性,分析了不同变位系数分配形式以及齿廓修形对非对称聚合物齿轮在内啮合情况下的瞬态弹流润滑的影响。结果表明,非对称齿轮能改善变位齿轮的润滑性能,正传动的变位类型的齿轮润滑性能最优,内齿轮采用较大的变位系数对热弹流润滑更为有利,合理的修形能够改善非对称变位齿轮的润滑性能。
不同基载液齿轮磁流体润滑与动力学耦合研究
为了探究不同基载液磁流体对齿轮润滑与动力学的耦合效应,建立齿轮动力学与磁流体润滑耦合模型及油膜刚度模型,基于4阶的Runge-Kutta法、多重网格法和多重网格积分法,分析了不同基载液磁流体对齿面成膜特性及动载荷分布的影响。研究结果表明,改变磁流体基载液,适当增大磁流体黏度,可以改善齿面的成膜特性;其主要体现为轮齿间油膜厚度和油膜刚度的增大以及动载荷下油膜压力和油膜厚度振幅的减小。磁流体的黏度增大时,齿轮系统的综合刚度增大,动态传递误差和齿轮副振动速度减小,动载荷的振幅减小,冲击载荷得到抑制,齿轮系统的动力学特性和NVH(Noise Vibration Harshness)性能得到提高。
内啮合齿轮传动系统的热弹流润滑特性分析
为探究内啮合齿轮传动的热弹流润滑特性,考虑多种齿轮传动类型及不同变位系数和的影响,建立了内啮合齿轮传动的热弹流润滑模型,分析了内啮合齿轮系统的热弹流润滑特性。结果表明,与其他齿轮传动类型相比,对于采取变位的内啮合齿轮传动系统,当实现正传动时,其润滑效果最佳,在啮合轮齿间可以形成较厚的润滑油膜,摩擦因数和油膜的最高温升最小,热胶合承载能力最强;当实现正传动时,适当增加内齿轮与行星齿轮的变位系数之和,可以进一步改善内啮合齿轮齿面的润滑特性,但同时降低了油膜刚度。
非对称聚合物齿轮的瞬态弹流润滑分析
聚合物齿轮质轻而耐腐蚀,可降低噪声,提高经济效益。相对地,聚合物轮齿强度低于金属轮齿,故采用非对称设计提高聚合物齿轮的强度。为探究非对称聚合物齿轮的弹流润滑特性,在水润滑条件下,采用多重网格法对非对称聚合物齿轮进行了瞬态弹流润滑分析对比非对称齿轮与传统对称齿轮的水膜压力与厚度;改变齿轮运行工况及考虑轮齿的表面粗糙度,研究其对齿轮弹流润滑分析的影响。结果表明,非对称齿轮可有效改善弹流润滑,润滑膜的压力和膜厚受齿轮转速和载荷影响较大,表面粗糙度对于非对称聚合物齿轮的弹流润滑有着不利影响,在应用中应保证齿面加工质量。
齿轮动力学与弹性流体动力润滑耦合研究
为探究齿轮的动力学特性与弹流润滑耦合效应,综合考虑齿轮啮合刚度的时变效应和表面粗糙度对齿轮动力学行为的影响,基于动力学理论,建立了6自由度摩擦动力学模型。采用解耦方法求解该模型,将求解获得的轮齿动态啮合力和表面波动速度用于弹流润滑分析中。通过实例研究了动、静两种载荷模型下齿轮的弹流润滑特性。研究表明,与平稳载荷相比,基于动载荷模型的齿轮弹流润滑研究更能准确反映齿轮的瞬态润滑特性,在啮合刚度的激励下,润滑时油膜压力和油膜厚度均表现出一定的振荡效应。啮入点、单齿啮入点以及单齿啮出点存在较大的冲击,是齿轮弹流润滑的危险点。
不同热处理下滑动速度对SiCp/Al复合材料摩擦学性能影响研究
SiCp/Al复合材料非匀质性微观结构使其摩损机制较传统匀质材料更为复杂,不同工况及热处理工艺下复合材料的摩擦学性能也存在差异。以SiCp/2024Al复合材料为研究对象,进行球-面接触干滑动摩擦磨损实验,探究它在不同热处理状态及滑动速率下的摩擦磨损性能及磨损机制。结果表明热处理对复合材料力学性能和摩擦学性能有显著影响,固溶%pLUS%人工时效态复合材料具有更高的强度、硬度及耐磨性;滑动速度影响复合材料的表面接触性质及磨损程度,摩擦因数和磨损量随滑动速度提高逐渐增大;随滑动速度增加,复合材料主要磨损机制由剥层磨损向磨粒磨损转变,而磨损机制的转变明显加快了复合材料的磨损,在实际应用中应尽量避免此现象发生。
-
共1页/6条