基于优化VMD和BP神经网络液压管路故障诊断研究
针对航空发动机液压管路故障信号易受噪声干扰、管路故障诊断准确率不高等问题,提出基于优化变分模态分解和BP神经网络的故障诊断方法。利用遗传算法自适应确定变分模态分解K、α的最优参数,然后采用优化后的变分模态分解方法对航空液压管路的振动信号进行分解,最后将故障特征明显的故障分量输入BP神经网络模型中进行训练和分类。结果表明:提出的基于变分模态分解与BP神经网络的航空液压管路故障诊断方法能够精准识别出航空液压管路多种不同的故障状态。
基于CEEMD航空液压管路故障诊断方法研究
航空液压管路是飞机液压系统的重要组成部分,为了对其早期故障进行准确识别及预测,针对航空液压管路中早期微弱故障振动信号进行研究,利用自适应白噪声完备总体经验模态分解方法将信号分解为多个分量,搭建ResNet网络结构,并将获得的分量输入到深度残差网络(ResNet)进行训练测试。实验结果表明:CEEMDAN-ResNet模型故障识别率可达99.78%,故障预测训练迭代到1200次时,准确率将会达到99.5%左右并持续稳定,验证了所建立的CEEMDAN-ResNet模型对航空液压管路早期故障
-
共1页/2条