B0-B0机车横向晃动现象研究
为解决某B0-B0机车在试验时出现的低频横向晃动问题,应用Simpack建立了该机车动力学模型,从振动特性的角度出发,采用根轨迹法对该机车低频横向晃动的问题进行分析,探究关键悬挂参数对机车振动特性的影响。分析结果表明机车“复合振动”模态在分界速度点处发生模态轨迹的异常变化是机车低频横向晃动现象产生的原因。从减小轴箱纵向定位刚度、增大二系弹簧水平刚度、减小电机减振器阻尼等3个方面对机车进行综合整改,拉开机车“复合振动”模态和转向架蛇行运动模态之间的振动频率,可以有效解决机车低频横向晃动问题。非线性计算结果表明,综合整改后机车动力学性能满足安全运用的要求。现场试验的结果表明,综合整改后机车基本消除了低频横向晃动。
牵引杆连接重载重联机车可行性研究
与钩缓装置相比,牵引杆制造简单、检修方便,如能采用牵引杆代替钩缓装置连接重载重联电力机车,重联机车的制造和运用维护成本将显著降低。利用TDEAS列车纵向动力学软件建立‘1+1’编组牵引2万吨列车模型,分析重联机车采用牵引杆连接对列车纵向冲动的影响,再利用SIMPACK多体动力学软件建立了1台重联机车及2节简化货车组成的列车模型,重联机车分别采用13A型钩缓装置和牵引杆连接。通过机车的轮轴横向力、脱轨系数和轮重减载率等动力学性能指标对比分析牵引杆和钩缓装置的承压能力。结果表明:重联机车采用牵引杆连接对减少列车纵向冲动的影响很小;13A型车钩缓冲器能在直线上承受2500kN的纵向压力,而采用牵引杆连接的重联机车承受同样大小的纵向压力是非常危险的。因此,用牵引杆代替重联机车钩缓装置是不可行的。
牵引杆对中低速磁浮动力学性能影响分析
为了研究牵引杆对中低速磁浮车动力学性能的影响,以第二代中低速磁浮车为原型,运用SIMPACK动力学分析软件建立了磁浮车的动力学模型。通过对车辆直线运行和曲线通过性能的仿真计算,分析了三种不同牵引杆布置形式及两种不同牵引杆杆长对中低速磁浮车辆动力学性能的影响。研究表明:端部悬浮模块牵引杆靠近车体中心的布置形式要优于其他的布置形式。采用该布置形式的磁浮车在通过曲线时,牵引杆的摆动角和关节轴承的载荷都较小。同时,长牵引杆又要优于短牵引杆。
转向架关键参数对地铁车辆提速设计的动力学分析
城市地域规模的扩张及地铁线路长度增加对车辆运营速度提出120km/h的提速求。以国内某地铁车辆为例,研究转向架关键参数对车辆提速的动力学影响,并给出了提速设计方案。研究结果表明车辆轴距、一系悬挂水平刚度、二系横向减振器阻尼、二系悬挂水平刚度的增大均可以显著提高车辆非线性临界速度。在保证车辆平稳性和曲线通过性能的求下,给出了提速地铁车辆转向架关键参数设计的方法:在满足车辆稳定性的前提下,车辆轴距、一系定位刚度的设计应考虑车辆曲线通过性能,二系横向减振器和二系水平刚度的设计应充分考虑车辆的平稳性指标。
-
共1页/4条