果蝇算法的MPSR-MKSVR轴承剩余寿命预测综合优化
针对小样本条件下的轴承寿命预测问题,提出一种基于多子种群混沌自适应果蝇算法的多变量相空间重构-多核支持向量回归轴承剩余寿命预测综合优化方法。对多个特征向量进行相空间重构从而更加完整地还原轴承退化特性;利用不同的SVR核函数进行排列组合得到一个组合多核函数,从而将多核函数的构造问题转换为权值系数的优化问题;将延迟时间、嵌入维数、SVR参数以及多核函数权值作为整体参数向量,利用多子种群混沌自适应果蝇算法对训练数据预测精度的适应度函数进行优化,从而得到最优的预测模型参数。最后将得到的预测模型对轴承剩余寿命进行预测,结果证明了提出方法能够有效提升小样本条件下的轴承剩余寿命预测精度。
基于脊线信息增强与特征融合的瞬时转频估计
转速获取是变工况设备健康诊断的前提。在不便安装速度传感器的情况下,基于振动信号时频分析获取转频是最常用的途径。然而,由于时频分析方法的自身特性和采集的振动信号中往往包含大量的背景噪声,导致得到的时频分布能量聚集性差、部分时段转速信息微弱等问题,很难提取到完整、准确的转频信息。为解决这一问题,提出一种脊线信息增强与特征融合的转速估计方法。采用幅值累加平方策略对时频分布特征进行增强;从信号低频区域和共振频带分别预估计出转频信息;最后,建立基于概率分布和局部波动特性的信息融合准则,以确定脊线融合位置以及融合结果,实现转频的准确估计。轴承故障实验信号验证说明相比于传统的转频提取方法,提出的方法能够显著地改善能量微弱的转速信息的识别结果。
-
共1页/2条