微型曲面薄壁件微细铣削参数与工艺试验研究
具有高展弦比的微型曲面薄壁件加工难度大,加工过程中极易产生变形与毛刺。为获得高质量的微型曲面薄壁件,以四分之一薄壁圆弧特征为例,通过正交试验研究了铣削参数对各评价指标的影响规律并进行了铣削策略分析。试验结果表明,对表面粗糙度Ra、尺寸误差△w和毛刺宽度h影响最大的铣削参数分别为主轴转速n、每齿进给量fz和轴向切深ap;工艺优化研究表明,采用变轴向切深与顺逆混合的铣削方式更有利于减小毛刺宽度和尺寸误差,获得更好的零件表面质量;同时,优化后的走刀路径能够减小垂直于薄壁侧面的切削力所导致的变形。该研究对于微型曲面薄壁件的高质量加工具有较高的参考意义。
高速铣削高温合金涂层刀具表面自组织结构研究
在高速铣削高温合金GH2132的过程中,刀具磨损严重、刀具寿命较短。在一定条件下,涂层刀具在稳定磨损阶段能够生成耐磨损或自润滑的氧化物薄膜层(自组织结构),此结构能够起到提高刀具切削性能、延缓磨损以及延长使用寿命的作用。基于此,进行高速铣削涂层刀具表面自组织结构研究,以提高刀具寿命。结果表明:高速铣削高温合金GH2132时,PVD-AlTiN硬质合金刀具表面自组织结构稳定存在的条件为F_(x)=90~105 N、F_(y)=115~168 N、F_(z)=410~510 N、σ_(s)=-735~-873 MPa。研究结果为涂层刀具加工高温合金提供了参考,并且有助于绿色智能制造。
基于辨识模型的轨迹误差预测方法
为研究轨迹误差的影响因素及规律,进行加工路径优化和轨迹误差预补偿,并提出一种基于辨识模型的轨迹误差预测方法。采用所建立的数控系统前瞻插补模块对G代码进行插补处理,获得离散位置指令;通过进给系统辨识模型对插补后的位置指令进行加工仿真,得到输出位置;根据插补位置数据和仿真得到的输出位置数据对加工轨迹误差进行计算。仿真结果表明:该方法可以快速计算数控机床联动加工时的轨迹误差值和分布情况,为轨迹误差的成因及规律分析、刀具路径的优化及轨迹误差预补偿的实施提供方法和数据支持。
高温合金GH4169球头刀铣削表面完整性测试实验研究
利用球头铣刀对高温合金GH4169试件进行铣削加工,并对其加工表面完整性指标进行检测。结果表明:在选取的实验参数条件下,线速度vc对于表面粗糙度Ra、表面显微硬度和加工表面残余应力等表面完整性指标的影响不明显;表面粗糙度Ra和加工表面显微硬度会随着切深ap和每齿进给量fz的增大而增大;高温合金GH4169球头刀铣削加工后的表面残余应力σH呈现为拉应力状态,范围为219.3~338.9 MPa;残余拉应力随着切深ap和每齿进给量fz的增大而减小,原因是随着切深ap和每齿进给量fz的增大,加工表面的塑性变形程度逐渐增加。
微沟槽顶部毛刺宽度微细切削试验研究
毛刺的存在影响工件的加工精度及加工效率。文章以毛刺宽度作为分析指标,采用正交试验对微细铣削过程中的关键因素(轴向切深、每齿进给量、主轴转速、径向切深)进行优化参数研究。分析结果表明:最优铣削参数组合是主轴转速为78000min-1,轴向切深为78μm,每齿进给量为1.5μm/z,径向切深为390μm;关键影响因素对毛刺尺寸影响的程度由大到小依次是主轴转速、轴向切深、每齿进给量和径向切深。由于参数优化铣削的微沟槽的顶边缘仍然存在尺寸较大的毛刺,文中采用后处理加工方法进行修正,结果表明能够进一步明显减小毛刺。
涂层刀具高速铣削高强钢刀具磨损及加工成本分析
选用PVD-TiAlN+TiN复合涂层硬质合金刀具高速铣削高强钢AISI4340,探讨了铣削参数对后刀面磨损的影响,并分析了加工成本。通过响应优化器得到具有95%置信度的理论最佳加工参数,采用Gilbert方法计算了加工成本,验证了该涂层刀具在高速铣削AISI4340时的经济可行性。结果表明,切削速度对后刀面磨损的影响最为显著,径向切深没有统计上的显著性,但径向切深在1~3mm时,后刀面磨损随径向切深的增加而增加。PVD-TiAlN+TiN复合涂层硬质合金刀具高速铣削AISI4340钢在最佳切削参数vc=350m/min,fz=0.03mm/z,ap=0.6mm,ae=4mm条件下的刀具寿命为31.30min,估计加工成本为17.35。该研究对高强钢的高效低成本加工具有指导意义。
PEEK的3D打印参数优化及铣削试验研究
以医学中常用到的PEEK材料作为研究对象,通过3D打印试验,对打印过程中的因素参数进行优化试验研究。利用正交试验法,以打印尺寸误差为试验指标,选取层厚、打印速度和喷嘴温度三个主要因素展开优化试验。铣削试验是利用电主轴对打印模型进行表面加工,选取合适的铣削参数展开试验。试验结果表明:层厚为0.3mm,打印速度为15mm/s,喷嘴温度为360℃时,可以获得最佳的打印质量;在此基础上进行铣削可以提高表面精度,并进一步通过试验验证。
微型薄壁件的微细铣削机理与工艺研究
文章针对微型薄壁的高精密微细铣削加工,展开加工机理与工艺的研究。通过构建微细铣削的有限元模型与微细铣削50μm厚度薄壁件的试验,揭示大切深与小切深时每齿进给量和轴向切深对薄壁特征尺寸误差的影响关系。结果表明,随着每齿进给量的增加,铣削力与尺寸误差都呈上升趋势。随着轴向切深的增加,铣削力增大,但薄壁特征的尺寸误差反而减小。表明了宏观薄壁特征切削中所提出的小切深多次走刀这种工艺路线在微小型薄壁特征的微细铣削中并不适合,主要原因是微型薄壁特征的几何尺度与微细铣削装备的精度更加接近,多次往复走刀引起的定位误差使薄壁尺寸误差变大。因此,大切深小进给可以在保证效率的前提下减小薄壁尺寸误差,更加适合微细铣削微小型薄壁特征。
高速干铣削高强钢铣削力及表面粗糙度研究
选用PVD—TiAlN-TiN硬质合金涂层刀具,进行高速干铣削AISI4340高强钢正交试验,研究铣削力及加工表面粗糙度随切削参数的变化,并建立铣削力及加工表面粗糙度与切削参数之间的经验模型。分析结果表明每齿进给量和铣削速度对主切削力Fz影响较大,径向切削深度对加工表面粗糙度Ra影响较小。建立的铣削力及加工表面粗糙度经验模型,经过检验,相对误差较小。涂层刀具高速铣削AISI4340钢时,采用较小的轴向切削深度和每齿进给量以及较大的铣削速度和径向切削深度有利于得到较小的铣削力和加工表面粗糙度。
高速干铣削高强钢加工表面硬化及残余应力研究
针对AISI 4340高强钢加工质量较差的问题,采用硬质合金涂层刀具进行高速干铣削试验,研究切削参数对加工表面硬化和残余应力的影响。结果表明:铣削速度对加工表面硬化程度和硬化层深度影响最大,且随着铣削速度的增加,加工表面硬度值减小,硬化层深度逐渐减小;加工表面在进给、切削以及45°方向均产生残余压应力,铣削速度和每齿进给量对残余应力的影响较大;在vc=400~500 m/min,fz=0.03~0.06 mm/齿,ap=0.2~0.3 mm,ae=3~4 mm的切削条件加工时,可以获得较小的加工表面硬化程度和较大的表面残余压应力。该结果对高强度钢类零部件的生产具有理论指导意义。