基于空化的液膜密封热流体动态特性分析
通过有限元法对动态雷诺方程和液膜能量方程进行推导求解,建立了考虑流体热效应和空化效应的液膜密封动态特性模型,分析了槽数、槽深、转速以及压力对液膜密封动态特性参数的影响。结果表明:在考虑空化及热黏的条件下,各角向之间的相互影响较弱,耦合角向系数小于正角向及轴向系数;刚度系数的绝对值会随着槽数、槽深、转速和压力的增加而增加;阻尼系数的绝对值会随着转速和压力的增加而增加,随着槽数和槽深的增加而略有减少;槽数、槽深、转速和压力的增加均会使液膜的抗干扰能力增强。
转子涡动工况下螺旋槽液膜密封性能研究
基于转子在临界转速下的涡动特性,分析转子涡动的轴心运动轨迹。由于动环圆心运动轨迹追随转子,故以动环圆心的圆形运动轨迹为研究点,建立动环偏心的液膜区域模型。采用有限差分法对广义雷诺方程进行离散,通过SOR迭代方法对离散方程进行求解,得到液膜密封端面压力分布,并探讨动环偏心距对液膜开启力、摩擦扭矩、泄漏量以及空化率等液膜密封性能参数的影响规律。结果表明:随着偏心距的增大,内径开槽的密封环槽区面积减少,导致动压效应降低,使密封端面压力呈现出不对称分布的结果;液膜开启力和摩擦扭矩由于密封环表面压力降低且分布不均匀都呈现出下降的趋势;泄漏量随偏心距的增加有下降的趋势,而空化率随着偏心距增加呈现出先上升后下降的规律。
基于声发射时频分析与卷积神经网络的液膜密封摩擦状态识别
针对液膜密封状态监测领域无损监测开发不足、信号特征评估困难以及摩擦状态判别智能化特性缺乏的问题,提出一种基于声发射时频分析与卷积神经网络的液膜密封摩擦状态识别方法。该方法将声发射无损监测技术应用于液膜密封的摩擦状态监测,卷积神经网络作为液膜密封摩擦状态自主决策的实现手段,声发射信号的时频信息作为卷积神经网络的特征输入,分析短时傅立叶变换、S变换以及小波变换3种时频分析方法对卷积神经网络识别性能的影响。结果表明:对于液膜密封的声发射信号,3种时频分析方法与卷积神经网络结合的优选顺序为:短时傅立叶变换、S变换、小波变换;基于声发射时频分析与卷积神经网络的液膜密封摩擦状态识别方法准确率较高,相比其他识别方法取得了较好的识别效果。
考虑离心项的螺旋槽液膜密封空化特性数值分析
针对液膜密封中空化问题,建立基于质量守恒JFO边界条件的螺旋槽液膜密封数学模型,采用流线迎风有限元法求解考虑液膜离心项的Reynolds控制方程,获得端面膜压分布,进而分析了操作参数对空化特性的影响。结果表明:不同操作参数下,空化发生时的液膜破裂位置均位于螺旋槽边界线上;转速的增大、膜厚及介质压力的减小促进空化的生成,反之,抑制空化发生。计算结果为液膜密封在不同操作条件下的设计和应用提供理论指导。
基于质量守恒边界条件的下游泵送螺旋槽液膜密封空化分析
液膜中空化的产生会影响密封润滑性能。基于质量守恒的JFO空化边界条件,建立螺旋槽液膜密封数学模型,采用流线迎风有限元法求解Reynolds控制方程,获得端面空化分布,并通过可视化试验进行了验证。以空化临界转速和临界压力为表征,分析了螺旋槽结构参数对空化特性的影响。结果表明螺旋槽内空化区域呈机翼截面型,且随着转速的增加而变大,随着内径压力的增加而减小,空化周向最大长度位于近槽根处;空化临界转速随着槽数、槽深的增加而增加,随着螺旋角、槽长坝长比、槽台宽比的增加而减小;空化临界压力随各结构参数的变化趋势与空化临界转速相反。通过对各结构参数的合理选择,可实现对空化的有效控制。
沟槽参数对螺旋槽液膜密封空化诱发影响分析
为进一步探索液膜密封端面空穴发生诱因及其影响规律,本文基于JFO(Jakobsson-Floberg-Olsson)空化边界,建立双坝区中间开螺旋槽的液膜密封物理模型,通过空穴可视化实验验证了程序算法的准确性,分析了不同空化边界下液膜密封的空穴特征。以密封面间润滑液体的液膜压力和密度变化为判据,探讨了槽深、槽角和槽数等参数对液膜始破位置、重生位置及空穴发生面积的影响。结果表明相比Half-Sommerfeld和Reynolds空化边界,基于JFO空化边界计算的空穴特征能更好地与实验结果相吻合;较大槽深和槽数,均缩小了液膜始破位置沿螺旋方向的空穴长度和液膜重生位置沿周向的空穴宽度,前者提升了两位置的空穴度,而后者降低了液膜重生位置的空穴度;槽角的增大,在扩大两位置空穴尺度的同时,提升了相应位置的空穴度;而液膜中空穴发生面积随槽深的增加线性降低,在较小...
不同润滑状态下表面粗糙度对人字槽密封性能的影响
为研究端面形貌对液膜密封密封性能的影响,在人字槽液膜密封端面结构的基础上,建立考虑密封表面粗糙度的数学模型,采用端面形貌表征值(微凸体周向与径向的长度比)和表面粗糙度标准差(综合表面粗糙度的均方根偏差)表征粗糙参数,分析不同润滑状态下表面粗糙度参数对人字槽密封性能的影响。计算结果表明:在混合摩擦状态时,随着端面形貌表征值的增加,摩擦因数和泄漏量逐渐减小,液膜承载能力变大;随着表面粗糙度标准差的增加,摩擦因数和泄漏量变大,液膜承载能力下降;在全液膜密封状态时,随着端面形貌表征值的增加,摩擦因数不变,泄漏量减小,液膜刚度先增大后略为减小;随着表面粗糙度标准差的增加,摩擦因数不变,泄漏量和液膜刚度变大。
-
共1页/7条