基于分形理论的接触式机械密封端面摩擦热模拟计算
通过模拟计算,分析工作参数和端面形貌分形参数对接触式机械密封端面摩擦热的影响.基于机械密封端面接触分形模型,考虑密封端面摩擦热、摩擦系数、端面温度之间相互影响的关系,提出了密封端面摩擦热的耦合计算方法.对内流式部分平衡型机械密封端面摩擦热的影响因素进行了计算分析.结果表明,随着弹簧比压或密封流体压力的增大,密封端面摩擦热线性增大;随着转速的增大,密封端面摩擦热近似线性增大,且密封端面越光滑,摩擦热的增量越大;随着端面分形维数的增大或特征尺度系数的减小,密封端面摩擦热非性线增大,且随着密封端面趋于光滑,摩擦热的增幅变大.
机械密封端面混合摩擦热计算分形模型
为研究和掌握混合摩擦状态下机械密封端面摩擦热的变化规律,基于端面接触分形模型和平均膜厚分形模型,建立了机械密封端面混合摩擦热计算模型,并通过计算分析了端面混合摩擦热的影响因素。结果表明,随着转速的增大,总摩擦热和液膜黏性剪切摩擦热比增大,微凸体接触摩擦热比减小;随着密封介质压力或弹簧比压的增大,总摩擦热近似呈线性增大,黏性剪切摩擦热比减小,接触摩擦热比增大;随着端面分形维数的增大和特征尺度系数的减小,总摩擦热和黏性剪切摩擦热比增大,接触摩擦热比减小,且端面越光滑,总摩擦热、黏性剪切摩擦热比、接触摩擦热比的变化幅度越大;当密封端面处于混合摩擦状态时,接触摩擦热大于黏性剪切摩擦热。
接触式机械密封跑合过程密封端面平均温度预测
为研究和掌握接触式机械密封跑合过程密封端面平均温度的变化规律,采用分形参数表征密封端面形貌的变化,基于接触分形模型,采用密封端面平均温度与摩擦系数相耦合的计算方法对密封端面平均温度进行预测。对两套机械密封进行跑合试验,依据试验得到的密封端面分形参数,通过计算得出密封端面平均温度。结果表明,在跑合初期,随着分形维数的迅速增大和特征尺度系数的迅速减小,密封端面平均温度迅速增大,之后变化幅度逐渐减小。弹簧比压大,跑合期短,温度升高值及最终达到的稳定值也大,但与密封端面形貌对温度的影响相比,弹簧比压的影响度较小。
工作参数对接触式机械密封端面接触特性的影响
为研究和掌握接触式机械密封端面接触特性,通过模拟计算分析了工作参数对其特性的影响。结果表明,在密封端面间真实接触面积中,弹性变形微凸体接触面积所占比例最大,塑性变形微凸体接触面积所占比例最小;随着弹簧比压的增大,弹性接触面积比近似呈线性增大,弹塑性接触面积比和塑性接触面积比近似呈线性减小;随着密封介质压力的增大,弹性接触面积比增大,弹塑性接触面积比和塑性接触面积比减小;随着转速的增大,弹性接触面积比逐渐减小,弹塑性接触面积比和塑性接触面积比逐渐增大。
基于平均膜厚和压力流量因子的机械密封泄漏分形模型
研究接触式机械密封端面泄漏模型建立问题.采用分形参数表征机械密封端面形貌,通过引入压力流量因子来反映实际粗糙表面对泄漏通道的影响,推导出了压力流量因子的分形表达式,建立了基于平均膜厚和压力流量因子的泄漏分形模型.通过理论计算对机械密封泄漏率的影响因素进行了分析,并在自制的试验装置上对2套B104a-70型机械密封进行了试验,试验密封流体为20℃清水,压力为0.5MPa,转速为2900r/min,弹簧比压分别为0.15和0.30MPa.研究结果表明泄漏率随着弹簧比压的增大略有下降,随着密封流体压力及转速的增大而增大,且端面越粗糙增大的幅度越大;当端面较粗糙时,泄漏率随着端面分形维数的增大或特征尺度系数的减小而迅速减小,而当端面较光滑时,泄漏率的变化很小;泄漏率的理论计算值与试验值吻合较好,特别是在进入正常磨损阶段后相差很小.
机械密封端面黏着磨损分形模型
在机械密封端面接触分形模型基础上,依据Archard磨损理论,通过引入分形磨损系数及求解塑性和弹塑性变形微凸体的体积,建立了机械密封端面黏着磨损分形模型。得到了机械密封软质环端面磨损率与端面轮廓分形参数、真实接触面积、材料性能参数以及工作参数之间的关系式。对B104a-70型机械密封软质环端面的磨损率进行了计算和分析。结果表明,端面磨损率随着端面比压、转速及端面特征尺度系数的增大而增大;随着端面分形维数的增大先迅速减小后逐渐增大,即存在一个使磨损率最小的最优分形维数。
-
共1页/6条