碳化硅陶瓷基复合材料的摩擦磨损性能研究
以不同孔隙率的C/C复合材料为预制体,以甲基三氯硅烷(CH3SiCl3)为反应源气、氩气为载气、高纯氢气为稀释气体,采用化学气相渗透法(CVI)制备一系列C/C-SiC复合材料,在MM-1000型摩擦磨损试验机上对C/C-SiC复合材料的摩擦磨损性能进行评价,分析不同原始密度及组分含量等因素对复合材料摩擦性能的影响.结果表明:随着预制体密度增加,C/C-SiC复合材料的平均摩擦系数、摩擦力矩和平均单位面积吸收功率等增大,刹车时间和线磨损率降低;C/C-SiC复合材料具有较高的静摩擦系数,其中预制体原始密度为1.44 g/cm3的复合材料较适用于刹车材料.
超临界二氧化碳干气密封热-流-固耦合建模与变形特性分析
为研究超临界二氧化碳干气密封密封环的变形分布,揭示工况条件对密封环变形的影响规律,在考虑CO2真实气体效应的同时,建立考虑密封环对流换热的热-流-固耦合计算模型,借助CFD和CSM计算机仿真技术,研究超临界二氧化碳干气密封动、静环在多重载荷共同作用下的变形规律。研究结果表明:密封环轴向最大热-流-固变形出现在耦合面,热变形和力变形方向相反,其中热变形起主导作用;转速增大,密封环最大轴向热变形和力变形增大,动环最大轴向热-流-固耦合变形减小;介质压力增大,动环和静环最大轴向力变形分别增大66.25%和6.18%,最大轴向热变形和热-流-固耦合变形均减小;进口温度上升,动环和静环最大轴向热变形分别增大40.79%和34.90%,最大轴向力变形基本不发生改变。
基于湍流模型的S-CO2干气密封流场与稳态性能分析
为探究湍流效应对S-CO2干气密封性能的影响规律,以螺旋槽干气密封为研究对象,引用考虑离心惯性力效应的湍流Reynolds方程,选择Ng-Pan湍流系数表达式,采用物性软件REFPROP对CO2真实物性进行计算。之后,根据普适能量方程,通过引入包含湍流效应、离心惯性力效应的平均速度,建立了可压缩流体简化能量方程。通过对湍流Reynolds方程与简化能量方程进行耦合求解,分析讨论了不同工况参数与平均膜厚下湍流效应对密封性能的影响。研究表明:湍流效应使得气膜流场内压力与温度分布发生显著变化,流场计算时不可忽略;在不同进口压力、进口温度下,湍流下的开启力和泄漏率显示出与层流一致的变化趋势;在不同平均膜厚下,考虑湍流效应后的开启力呈现出与层流不同的变化规律,而泄漏率表现出与层流相同的变化趋势;在不同进口压力、进口温度、平均膜厚下,湍流下...