碧波液压网 欢迎你,游客。 登录 注册

LTSA和深度置信网络的行星齿轮箱故障诊断

作者: 王建国 刘冀韬 来源:机械设计与制造 日期: 2024-08-16 人气:84
LTSA和深度置信网络的行星齿轮箱故障诊断
针对行星齿轮箱振动信号维度高,传统故障诊断方法识别精度低的问题,提出一种基于局部切空间排列算法(Local Tangent Space Alignment,LTSA)和深度置信网络(Deep Belief Network,DBN)的行星齿轮箱故障诊断方法。首先,利用PCA算法预估高维数据的内在维度,确定目标数据的内在维数;其次,根据目标数据的内在维数结合LTSA算法对高维数据集进行约简,并划分测试集和训练集;最后,利用训练集训练DBN模型参数,获得行星齿轮箱故障辨识模型,并将测试集输入辨识模型实现行星齿轮箱故障辨识。实验结果表明,所提方法实现高维数据降维的同时,也提升了智能诊断模型的分类精度。

自适应MCKD和VMD在行星齿轮箱早期故障诊断中的应用

作者: 王建国 刘冀韬 张文兴 来源:机械设计与制造 日期: 2024-08-07 人气:131
自适应MCKD和VMD在行星齿轮箱早期故障诊断中的应用
针对行星齿轮箱早期故障信号微弱且受强背景噪声影响,致使故障信号特征频率难提取,通过自适应最大峭度解卷积(MCKD)和变分模态分解(VMD)进行早期故障特征提取。首先,利用变步长搜索,以峭度值为评判标准,搜索最优滤波器长度L;然后,将信号通过优化后的自适应MCKD算法降噪;最后,利用VMD分解降噪信号,通过包络谱进行分析,寻找故障特征频率。经仿真信号和实验信号验证,这里所提方法能够有效地提取出强噪声背景下的行星齿轮箱故障特征。
    共1页/2条