小样本下基于原型网络的轴向柱塞泵故障诊断模型
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.99 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
在实际工程应用中,有限的故障样本数量及噪声都影响轴向柱塞泵故障诊断的效果,所以,如何提高模型在小样本、噪声条件下轴向柱塞泵故障诊断的性能是一个亟待解决的问题。在样本数量有限、噪声条件下,采用基于深度学习的故障诊断方法会出现过拟合、诊断准确率下降的问题,为此,提出了一种小样本条件下基于原型网络的轴向柱塞泵故障诊断模型(方法)。首先,搭建了轴向柱塞泵故障诊断模型,并等量随机抽取了每个故障的样本以构建多个任务,模型使用一维卷积神经网络作为主干,每个任务中包含当前模型、支持集、查询集;然后,利用模型将样本映射到特征空间,在特征空间中,模型使用支持集的同类样本构建了原型点,并逐个将查询集样本与多个原型点进行了距离度量,实现了轴向柱塞泵不同故障的分类;最后,为了验证基于原型网络的轴向柱塞泵故障诊断模型的有效性,采集了轴向柱塞泵不同元件发生故障时产生的振动信号,并使用上述诊断模型对此进行了故障识别实验;为了验证该诊断模型的优越性,将其与基于卷积神经网络等的模型进行了性能对比。实验结果表明:在样本有限的条件下,采用基于原型网络的轴向柱塞泵故障诊断模型的准确率达到85%以上;同时,在噪声条件下,采用基于原型网络的模型的准确率也能达到85%以上。研究结果表明:基于原型网络的模型的诊断性能优于卷积神经网络模型与传统方法。相关论文
- 2020-08-03单气室油气弹簧阻尼特性及其影响因素分析
- 2025-02-02一种混合动力总成及其模式切换策略的研究
- 2020-10-29某收放作动筒安全活门开启故障排除及预防
- 2021-04-25基于COBRA的深沟球轴承结构改进设计
- 2021-08-10某型号双螺杆压缩机流场分析及试验验证
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。