简介
针对支持向量数据描述(SVDD)算法对滚动轴承早期故障不敏感、参数选择困难的问题,提出了一种基于果蝇优化算法-小波支持向量数据描述(FOA-WSVDD)的滚动轴承性能退化评估方法。提取滚动轴承早期无故障振动信号的时域、时频域特征向量,并基于单调性进行特征选择;针对现有核函数对滚动轴承早期故障不敏感问题,将小波核函数引入到SVDD算法中;针对SVDD算法参数选择困难的问题,以支持向量个数与总样本数的比值作为适应度函数,采用改进的FOA算法对其核参数进行优化,建立FOA-WSVDD评估模型;最后,将轴承后期振动数据的特征向量输入到该WSVDD模型中,得到轴承的性能退化指标。试验结果表明,采用所提方法能准确地对轴承早期故障作出预警,与基于高斯核函数的SVDD算法相比,提前了17h。
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。