支持张量机与KNN-AMDM决策融合的齿轮箱故障诊断方法
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
5.18 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对齿轮箱故障诊断时使用单一传感器进行信号获取过程中存在信息不完整的问题,导致故障特征信息及诊断推理方法具有随机性和模糊性。利用多传感器信息融合的二阶张量特征作为输入,构建了一个支持张量机和集成矩阵距离测度(Assembled Matrix Distance Metric,AMDM)的K最近邻分类器(k-nearest neighborhood classifier,KNN)决策融合故障诊断模型。首先,对多传感器信息时频域特征层进行融合,获得二阶张量的特征样本;其次,分别构建基于集成支持张量机、KNN-AMDM的故障诊断模型,并针对两类故障诊断模型的输入,设计了两种基本概率分配赋值的转化方法,通过不断调整参与的传感器数目获得6种不同的故障征兆张量集,进而得到12种不同的初步故障诊断结果;最后,采用D-S证据理论对12个证据体提供的基本概率分配值进行融合决策,得到最终的齿轮箱故障诊断结果。实验对比表明,该方法可提高齿轮故障诊断结果的可信度。相关论文
- 2025-01-03某款发动机水泵异响问题解析
- 2021-10-19二维活塞式动态流量计研究
- 2025-01-02某款发动机油气分离器与缸盖结合面渗油问题改进
- 2024-11-18信息化教学设计在气缸磨损检查实训中的应用
- 2021-09-15管道流量无损检测的研究
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。