基于单层SAE与SVM的滚动轴承性能退化评估
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.16 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
滚动轴承是旋转机械设备的常用关键部件之一,其性能退化评估是机械设备状态监测与视情维修的基础和依据。为及时准确掌握滚动轴承性能退化趋势与程度,提出基于单层稀疏自编码学习和支持向量机的滚动轴承性能退化评估方法,研究能够深度挖掘数据各种潜在隐含信息的稀疏自编码学习方法以及基于时频域特征和稀疏自编码学习的轴承状态特征的提取方法;提出基于支持向量机分类算法改进的轴承性能退化评估算法,并应用到滚动轴承的性能退化评估模型中,确定了模型参数寻优的方法;最后将所获得的轴承状态特征输入到轴承性能退化评估模型,得到了轴承性能退化趋势图,并通过滚动轴承实例验证了所提出方法的实用性。相关论文
- 2021-04-29基于某核电冷却汞零部件的五轴联动加工优化分析
- 2020-11-17耐压薄壁组件数控加工工艺研究
- 2021-03-22关于变量编程与旋转平移指令的综合应用
- 2021-03-23两种简单实用的车削工装设计
- 2020-11-03开口旋转环加工工艺分析
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。