神经元活性引导机器人脱困的全覆盖路径规划
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.78 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
52
简介
为了解决生物激励神经网络算法在全覆盖路径规划中陷入死区的问题,提出了脱困点搜索和脱困路径规划组合的脱困机制。建立了工作区域的栅格模型,分析了生物激励神经网络算法原理和缺陷。通过设计元胞演化规则,给出了基于元胞自动机的最佳脱困点搜索方法。对于脱困路径规划问题,传统RRT算法的采样和扩展具有随机性和盲目性,提出了神经元活性引导RRT算法,使RRT算法的随机树扩展具有较强的方向性。经仿真验证,与传统RRT算法相比,神经元活性引导RRT算法的耗时减少了一个数量级,扩展节点数减少了2倍,脱困路径减少了12.96%,是一种非常高效的脱困方法。另外,具有脱困机制的生物激励神经网络算法能够完成工作区域全覆盖,有效解决了死区问题。相关论文
- 2021-04-14IHB法在多自由度Bouc-Wen滞回非线性系统响应特性研究中的应用
- 2022-03-22民用飞机机翼副油箱静载荷计算
- 2021-02-18非能动核电厂-回路核辅助设备安装方式探讨
- 2020-12-29悬臂梁共振频率与其形状的关系探讨
- 2020-12-04基于产品设计中的电机安装方式的变革
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。