碧波液压网 欢迎你,游客。 登录 注册

一种基于新型轻量级神经网络的滚动轴承故障诊断方法

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
3.80 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
31

简介

液压导航网
近年来随着传感器的技术进步,使得滚动轴承的故障数据获取成几何倍数增长。然而,传统的深度学习方法在处理海量数据时,常常会出现效率低、计算量与占用内存过大的问题。为解决这些问题,文中提出了一个双层宽核卷积神经网络(Two Wide Kernel Convolutional Neural Network,TWCNN)模型用于滚动轴承故障诊断。该模型以一维振动信号作为输入(1D-TWCNN),通过在前两个卷积层中采用宽卷积核提取特征,实现了以较少的参数来获取更大的感受野,因此大幅地减少了网络模型的连接参数,使得模型的计算量大幅减少,效率提升。与传统的优秀轻量化模型MobileNetV3(Small)的变体和ShuffleNetV2相比,文中所提出的1D-TWCNN模型不仅总参数量远小于这两个模型。而且在滚动轴承的故障诊断中的诊断精度更高。
标签: 神经网络
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码: 看不清?点击更换

最新评论