碧波液压网 欢迎你,游客。 登录 注册

基于PCA-RF的热轧带钢板凸度预测

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
3.69 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

为了满足日益增长的带钢板凸度预测精度和速度要求,建立了一种基于降维的主成分分析(Principal Component Analysis,PCA)协同随机森林(Random Forest,RF)的板凸度预测模型。首先,应用Pauta准则去除异常值,用五点三次平滑公式进行降噪处理;其次采用主成分分析法对数据进行降维,利用载荷矩阵选取关键控制变量;最后利用关键控制变量建立基于随机森林的板凸度预测模型,并与支持向量机回归(Support Vector Regression,SVR)、最近邻(K Nearest Neighbor,KNN)、轻量梯度提升机(light Gradient Boosting Machine,LightGBM)、极端梯度增强(Extreme Gradient Boosting,XGBoost)和梯度提升决策树(Gradient Boosting Decision Tree,GBDT)模型进行比较。结果表明,PCA-RF模型将参数由93维降低到15维,极大地减少了建模时间,且PCA-RF对测试集预测的决定系数(Coefficient of Determination,R2)、平均绝对误差(Mean Absolute Error,MAE)和均方根误差(Root Mean Squared Error,RMSE)分别为0.9820、1.4852μm和2.2603μm,均优于其他预测模型,且98%以上样本点的预测误差为-3~3μm,满足板凸度预测的精度要求。从而证明该模型能够通过降维减少建模时间,同时实现了带钢板RF凸度的高精度预测,为热轧带钢板凸度的研究提供了一定的参考。
标签: 有限元
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论