遗传优化LVQ神经网络在设备故障诊断系统中的应用
为了提高设备故障诊断的准确度,采用LVQ神经网络来完成设备故障定位及识别,并借助遗传算法求解LVQ神经网络权重初始值。在设备故障诊断的建模过程中,根据实际故障情况和故障常见类别建立LVQ神经网络的设备故障诊断模型,充分挖掘LVQ神经网络在机械设备故障诊断细粒度的优势,为了防止因为故障细粒度诊断而造成收敛过慢的情况,对LVQ神经网络的权重和阈值初值进行遗传算法求解,然后在进行LVQ神经网络的迭代训练,得到稳定的LVQ神经网络故障诊断模型。经过实验证明,相比于传统的LVQ神经网络算法,采用基于遗传算法优化LVQ神经网络的设备故障分类,分类准确度更高,训练时间更快。
狼群优化LVQ神经网络的齿轮箱故障诊断应用研究
为了提高齿轮箱故障诊断的准确度,采用LVQ神经网络来完成齿轮箱故障定位及识别,并借助狼群优化算法来实现模型参数的优化。在齿轮箱故障诊断的建模过程中,引入狼群优化算法,将LVQ神经网络权重和阈值作为狼群个体,随机产生的多个权重和阈值组合个体构成狼群,并根据狼群游走、召唤和围攻等行为,不断更新狼群中个体狼的位置来获取全局适应度最大的头狼,得到最优权重和阈值,确定最优齿轮箱故障诊断模型。经过实验证明:采用基于狼群优化LVQ神经网络的齿轮箱故障分类,分类准确度更高。
-
共1页/2条