基于Informer神经网络的工作面矿压预测研究
为了有效改善工作面矿压预测精度低、泛化能力不足的问题,基于Informer神经网络模型建立矿压时序预测模型,以液压支架采集到的历史矿压数据为输入,实现对未来一段时间的工作面矿压预测。所建立模型基于概率稀疏(ProbSpare)自注意力机制所提取到的矿压输入序列信息,可捕获输入序列的长期依赖关系,并对影响因素之间较为复杂的非线性关系进行建模,从而提高模型预测精度。采用成庄矿XV1307工作面矿压数据进行模型训练和测试,所得结果与粒子群优化BP神经网络(PSO-BP)和长短期记忆网络(LSTM)的预测结果进行对比。结果表明3种模型对未来1~4 d的矿压预测中,Informer神经网络的均方根误差、平均绝对值误差以及决定系数均为最优,取得了较好的预测效果。
基于自注意力的双波段预警雷达微动融合识别
针对预警雷达对气动目标协同识别的需求,提出一种自适应权重双输入自注意力残差融合识别方法。通过分析不同波段雷达对气动目标的微动差异性,在传统卷积块注意力模块(convolutional block attention module,CBAM)残差网络的基础上进行针对性改进,设计加权双输入CBAM(weighted double input-CBAM,WDI-CBAM)残差结构,对两种波段的时频图浅层特征自动分配权重并融合,从而均衡不同波段对目标识别的贡献度。仿真和实测数据处理结果表明,WDI-CBAM残差网络训练代价小,在信噪比较低及驻留时间较短的情况下识别率高。可视化结果进一步证明了所提方法能够合理分配不同波段输入对气动目标分类的重要性。
基于RF-DGRU-SA的涡扇发动机剩余寿命预测
针对涡扇发动机在退化过程中机制复杂、状态检测数据维数过高等问题,提出一种随机森林(RF)和基于自注意力机制(SA)深度门控循环单元(DGRU)相融合的涡扇发动机剩余使用寿命(RUL)预测方法。利用RF算法确定重要度阈值实现特征筛选。将筛选出的特征输入DGRU-SA模块,通过多层GRU神经网络挖掘出相关特征与目标值之间的隐藏信息,利用SA神经网络为隐藏信息添加不同大小的权重。最后,利用全连接层输出预测结果,采用CMAPSS数据集进行实验验证。结果证明:与传统的
-
共1页/3条