人工神经网络预测刀具磨损和切削力
刀具磨损和切削力预测与控制是切削加工过程中需要考虑的重要问题.本文介绍了利用人工神经网络模型预测刀具磨损和切削力的步骤并且针对产生误差的因素进行分析.首先将切削速度、切削深度、切削时间、主轴转速和不同频带的能量值通过归一化法处理,作为输入特征值,对改进的神经网络模型进行训练.然后利用训练完成的神经网络模型预测刀具磨损和切削力.结果表明神经网络模型能够综合考虑加工过程中更多的影响因素,与经验公式结果对比,具有更高的预测精度.研究结果表明神经网络模型预测刀具磨损和切削力具有可行性和准确性,为刀具结构的优化及加工参数的选择提供了依据.
-
共1页/1条