基于WPD-FWEO的轴承故障特征增强方法
用小波包分解(Wavelet Packet Decomposition,WPD)处理低信噪比信号时,常出现残存大量带内噪声的问题,严重影响了后期的故障诊断准确性。针对该问题,提出将频率加权能量算子(Frequency-Weighted Energy Operator,FWEO)作为小波包分解的后处理器,以消除其带内噪声,增强故障特征提取效果。对采样获得的故障数据进行3层小波包分解,得到各频带系数;对每个频带系数进行峭度计算,以峭度最大原则获取最优频带系数;以频率加权能量算子追踪最优频带系数的瞬时能量,从信号能量的角度消除信号中的带内噪声成分,二次增强信号中隐藏的故障脉冲信息;对其进行包络谱分析,得到最终诊断结果。仿真数据、实验室数据和工程数据验证了所提方法的有效性和实用性。
基于MED-FWEO的滚动轴承故障检测
频率加权能量算子(FWEO)能够通过对信号瞬时能量的追踪消除信号中的噪声分量,突出故障冲击分量,对于轴承信号的处理具有较强的抗干扰性,然而对强噪声干扰下的信号则效果不够理想。针对该问题,提出将最小熵解卷积(MED)用于信号的预处理,以此消除信号采样过程中的传递噪声干扰,增强信噪比;而后以FWEO对处理后信号的瞬时能量进行追踪,从能量的角度进行故障特征的二次增强;最后通过包络谱分析获得诊断结果。仿真数据、实验室数据均表明所提方法能够在受强噪声干扰下的轴承故障信号中大幅消除噪声,准确提取出故障分量。
强噪声背景下频率加权能量算子和变分模态分解在轴承故障提取中的应用
从机械系统中传出的信号通常包含着不同的叠加振动成分,包括有用信息以及不可避免的背景噪声和其他频率干扰,因此波形较为复杂,并且其幅值和频率会随着时间发生变化。当背景环境较为复杂或噪声较大时,从混合信号中提取出的轴承故障特征信号更是如此。对于此类信号,模态分解算法不仅可以去除大量的高频噪声,而且还能将振动信号分解成一系列具有单一成分的模态分量,从而更好地发现振动信号的物理意义。引入一种新的轴承故障特征提取方法,首先利用变分模态分解算法先将故障信号分解为若干个成分单一的模态分量;然后利用一种新的能量算子——频率加权能量算子对含有故障频率的模态分量进行处理,得到其能量谱从而提取出轴承故障特征频率;最后以一种常见的振动筛分设备振动筛为实际案例,对其轴承故障特征进行提取,并通过对比,说明...
-
共1页/3条