平面四杆机构刚体导引综合的小波特征参数法
针对傅里叶级数理论不能进行非整周期刚体导引综合的问题,提出了基于Haar小波级数的解决方法,将早期提出的解决平面四杆机构轨迹综合问题的方法扩展到平面四杆机构的刚体导引综合中。通过对刚体转角和其对应基本尺寸型的连杆转角小波系数进行分析,发现了二者的内在联系。在此基础上建立了101 408组基本尺寸型的平面四杆机构刚体导引输出特征参数数据库。将位置输出问题转化为平面四杆机构轨迹综合问题,并给出了计算平面四杆机构实际尺寸和机构安装位置参数的理论公式。利用建立的数据库和理论公式,实现了平面四杆机构非整周期刚体导引综合。以生产线上的输送工件的铰链四杆机构为例,证明了本文方法的有效性和可行性。
带预定时标平面四杆机构刚体导引综合的代数求解
为弥补精确点法、优化法和数值图谱法等已有方法的不足,进一步提高带预定时标平面连杆机构刚体导引综合的精度与效率,提出一种基于傅氏级数的平面四杆机构刚体导引综合的代数求解方法。依据平面四杆机构连杆转角函数是周期性函数的性质,根据傅氏级数理论,建立了用傅氏级数描述的平面四杆机构连杆转角函数的数学公式,并通过离散傅立叶变换得到连杆转角函数傅氏级数展开的谐波参数,将机构连杆转角函数表示成了以输入曲柄转角为自变量的函数,进而通过分析平面运动中刚体导引标线转角函数与机构连杆转角函数之间的内在联系,得到了二者谐波参数间的函数关系。在此基础上,根据复矢量理论,建立了平面四杆机构的封闭矢量方程,将由傅氏级数表示的连杆转角函数带入机构封闭矢量方程,通过消元、化简将方程进一步转化为仅由机构基本尺寸...
-
共1页/2条