沙尘环境下高速列车气动特性分析
为研究沙尘环境下高速列车明线运行时的气动特性,基于剪切应力传输模型SST k-w双方程湍流模型和拉格朗日离散相模型,与无沙环境下的高速列车气动特性进行比较,计算分析不同沙粒浓度、不同车速下的高速列车气动特性。计算结果表明:沙尘环境下,当车速一定时,列车整车气动阻力、头车气动阻力、尾车气动阻力均随沙粒浓度增加而逐渐增大,且与沙粒浓度近似呈线性关系;对于气动升力,当车速一定时,头车气动升力绝对值随沙粒浓度的增加而增大,尾车气动升力随车速的增加而降低。该研究成果可为高速列车在沙尘环境中的运行安全提供理论参考。
尾翼对汽车气动性能的影响
汽车行驶速度提升的同时也带来了高速稳定性和节能减排2个问题。运用汽车空气动力学原理,基于某款车型,利用STAR-CCM+仿真工具建立尾翼的物理模型。通过模拟仿真,发现加装尾翼后,在车速小于120 km/h的5种不同速度条件下,整车气动阻力可降低1%~3%,气动升力可降低43%~46%。结果表明,加装尾翼可改善汽车的气动特性,降低油耗并显著提高汽车的操纵稳定性。该结果可为汽车动力学研究提供参考。
类车体超车过程气动阻力分析研究
采用低雷诺数(Re)SSTk-ε模型和高雷诺数(Re)SSTk-ε模型两种方法来模拟类车体超车过程。分析了气动阻力系数、侧向力系数和倾覆力矩系统的变化规律,并对分析结果与相关的参考文献和试验结果进行,验证了数值模拟方法的有效性和可行性。
数值风洞仿真与开阔路面仿真的关联性研究
为研究计算域对气动阻力的影响,根据实车风洞的结构参数搭建了数值风洞模型,并以开源模型DrivAer为研究对象,开展了12种车辆形态的数值风洞仿真与开阔路面仿真的对比分析。结果表明:光滑车底时,两种仿真得到的阻力值相差较小,为6~12个点(counts);详细车底时,两种仿真得到的阻力值相差较大,为17~22个点(counts)。两种仿真得到的两种车辆形态之间气动阻力的变化趋势基本一致,但改变车底和气坝时,两种仿真得到的气动阻力变化量相差9~15个点(counts)。
基于最优拉丁超立方设计的高速列车流线型头型减阻优化研究
为研究流线型头型对高速列车气动阻力性能的影响特性,利用B-Spline曲面建立高速列车流线型头型三维参数化模型,并提取5个头型设计变量。在此基础上,结合最优拉丁超立方设计和计算流体力学方法,研究高速列车流线型头型控制型线对高速列车气动阻力的影响特性,确定出关键控制型线。计算结果表明:随着流线型头型控制型线的变化,高速列车气动阻力发生明显改变,变化范围为3183~3509 N,相对变化量约为10.2%。最优设计点头型下的气动阻力较原始头型降低3.5%。对高速列车气动阻力影响最为显著的控制型线为纵向对称线,其次是车底最大轮廓线和水平最大轮廓线,而鼻尖高度控制线和中部辅助控制线对高速列车气动阻力的影响相对较小。