跨座式单轨刚柔耦合动力学等效计算研究
轮轨刚柔耦合动力学是车辆动力学及有限元研究的基础,跨座式单轨轨道的刚度较小及受力较大,相比车体更加适合做柔性化处理,但是由于跨座式单轨轨道梁的大尺寸使得计算难度较大,其刚柔耦合动力学的成果较少。针对柔性轨道的跨座式单轨刚柔耦合动力学,采用等效原理将轨道梁的动态受压变形化为车辆轮轴所受的外力,并构建了轮轨耦合动力学方程,建立了基于迭代方法的轨道梁有限元模型及车辆动力学模型,将计算结果与实车试验数据比较,验证了迭代的收敛性及准确性。结果表明采用等效力及迭代方法可以有效的计算跨座式单轨刚柔耦合动力学。
基于响应面法的液压机械臂结构优化
为了减轻液压机械臂的自重,降低动力系统能耗,提高控制响应速度,文中采用基于响应面法的结构优化设计方法对某型机械臂进行轻量化设计研究。首先,选取机械臂板材厚度为待优化参数并使用拉丁超立方法进行试验设计抽样;其次,采用多项式拟合方法建立板材厚度和主臂最大米塞斯应力之间的响应面,代替有限元模型提高计算效率;最后,以主臂米塞斯应力为约束边界,以主臂轻量化为优化目标,采用蒙特卡洛法求解优化问题,得到最佳板材厚度。将优化后的参数输入到有限元模型中,验证优化结果的正确性。优化后,主臂总质量降低28%,达到了轻量化设计的目标。也为类似结构的优化设计,提供了良好工程案例。
剪叉式液压升降机剪叉机构动态强度及疲劳强度研究
针对长期处于循环载荷作用下的液压升降机剪叉机构存在结构开裂的问题,分别对其进行了动态强度与疲劳强度研究,提出了基于有限元+多体刚柔耦合动力学+疲劳分析的联合分析法,对剪叉机构动态强度与疲劳强度进行研究。以某型自行走剪叉式液压升降机为例,利用SolidWorks辅助RecurDyn软件,建立整机多刚体动力学模型,再以HyperMesh/OptiStruct软件对其剪叉机构进行柔性化处理,建立多体刚柔耦合动力学模型,模拟极端工况下作业平台的升降运动行为过程,并提取到剪叉机构关键叉臂的动态应力时间历程;在此基础上,结合名义应力法,利用FEMFAT软件预测得到剪叉机构的疲劳强度。研究结果表明:当前剪叉机构能满足结构强度设计要求;剪叉机构中疲劳强度最薄弱区域位于第3组内叉臂的钣金与矩形管连接处,最小疲劳寿命为6.602×10^(3)次循环,有必要进一步优化结构。研究...
刚柔耦合并联机器人动力学建模及仿真研究
并联机构在运动过程中存在弹性变形和刚柔耦合效应,对机构的运动及其稳定性具有较大影响。针对上述问题,以3自由度刚柔耦合并联机器人为研究对象,基于线性多体系统传递矩阵法(线性MSTMM)建立了刚柔耦合并联机器人多体系统模型和拓扑结构模型,推导了整体系统的空间转换方程和动力学方程;通过Matlab软件建立了机器人SimMechanics仿真模型,并基于PID控制策略对机器人进行了轨迹跟踪的仿真研究。结果表明,机器人末端输出的实际运动轨迹与期望轨迹基本吻合,机器人系统运动相对稳定,验证了该建模方法的正确性和有效性,为进一步对并联机构进行研究提供了一定的理论依据。
-
共1页/4条