基于RSGWPT-LCD的轴承信号故障特征提取及模式识别
为了有效提取滚动轴承振动信号的故障特征和提高分类识别精度,提出了一种基于冗余二代小波包变换-局部特征尺度分解(redundant second generation wavelet packet transform-local characteristic scale decomposition,简称RSGWPT-LCD)和极限学习机(extreme learning machine,简称ELM)相结合的故障特征提取和分类识别方法。首先,利用希尔伯特变换对原始振动信号进行处理,得到包络信号;其次,基于双层筛选机制,结合冗余二代小波包变换(redundant second generation wavelet packet transform,简称RSGWPT)和局部特征尺度分解(local characteristic-scale decomposition,简称LCD)方法对包络信号进行分解,筛选出包含主要信息的内禀尺度分量(intrinsic scale components,简称ISCs);然后,对提取的各ISCs分量构建初始特征矩阵并进行奇异值分解(singular value decomposition,简称SVD),将得到的奇异值作为表征各损伤信号的特征向...
ITD-多尺度熵和ELM的风电轴承健康状态识别
对风力发电机机组的运行状况进行实时监测,并识别其健康状态,是保证机组正常运行的关键,为此提出一种固有时间尺度分解(Intrinsic time-scale decomposition,ITD)-多尺度熵(Multiscale entropy,MSE)的振动信号分析方法,对振动信号进行预处理,提取重构信号时域特征,并结合极限学习机(Extreme learning machine,ELM)对风电轴承健康状态进行识别。首先采用ITD方法对风电轴承的振动信号进行分解,得到一系列固有旋转分量,并计算其多尺度熵值,以多尺度熵值大小为依据,选取固有旋转分量并进行信号重构。计算重构信号的均方根值、峭度值、峰值因子与峰峰值,并将其作为特征指标值,建立ELM识别模型,识别风电轴承的健康状态。风电轴承试验结果表明,本文模型可以准确识别风电轴承健康状态。
H-K-ELM在滚动轴承故障诊断中的应用
针对滚动轴承振动信号的不规则性和复杂性,导致轴承状态难以有效识别的问题,提出基于分层核极限学习机(HierarcHical Kernel Extreme Learning MacHine,H-K-ELM)的滚动轴承故障诊断方法。首先,将测得信号经集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)处理后得到一系列IMF本征模态分量,并提取各分量的排列熵PE值组成高维特征向量集;其次,利用高斯核函数的内积来表达ELM算法的隐含层输出函数,然后使用自动编码器对其分层,从而隐含层节点数自适应确定和隐含层阈值与输入权值满足正交条件;最后,将所得高维特征向量集作为H-KELM算法的输入,通过训练建立核函数极限学习机滚动轴承故障分类模型,进行滚动轴承不同故障状态的分类辨识。实验结果表明:H-K-ELM滚动轴承故障分类模型比ELM、K-ELM故障分类模型具有更高的精度、更强的稳定性。
基于多尺度排列熵的滚动轴承故障诊断
针对轴承发生故障,振动信号会表现出复杂性的情况,运用多尺度排列熵(Multiscale Permutation Entropy,MPE)方法对振动信号进行分析。首先对嵌入维数、延迟时间以及数据长度对排列熵的影响进行了分析,在此基础上分析尺度因子关于多尺度排列熵的影响,然后对滚动轴承振动信号进行更准确的故障特征提取,并利用极限学习机(Extreme Le arning Machine,ELM)方法对其进行故障分类,与神经网络的分类效果相比较,结果显示,极限学习机与多尺度排列熵相结合,可以很好地实现故障诊断。