基于DAG-SVM的煤矿井下输送装置故障在线检测
针对现有故障在线检测方法分类性能差、检测率低的不足,提出一种基于DAG-SVM的煤矿井下输送装置多故障在线检测方法。提取井下输送装置各构成零部件的原始故障信息,对故障信号进行降噪和归一化处理,得到高频特征向量;利用DAG-SVM故障分类方法,根据故障特征向量的种类和数量构造多个分类器,通过两两比对准确识别出故障类别,并预估出故障样本的演化趋势。数据仿真结果表明:利用所提出方法确定的超平面更为合理,该方法分类精度高,多故障综合在线检测准确率达到99.47%,显著优于现有检测方法。
基于小波包分解与DAG-SVM的柱塞泵故障诊断
针对柱塞泵检测诊断中故障特征模糊、成因复杂、难以准确定位的问题,结合决策树与支持向量机提出一种基于小波包分解与DAG-SVM的柱塞泵故障诊断方法。该方法预先对所用C-SVM和RBF核函数的参数进行优化,而后采用db5小波包对泵体振动信号进行三层分解以提取特征向量,将特征向量输入支持向量机完成其训练及模式识别过程。同时设计了柱塞泵故障诊断的一体化装置,通过模拟不同故障,利用已知故障样本完成支持向量机的训练过程,进而对待测样本进行故障模式识别。诊断结果与样本已知状态相符,验证了该方法的准确性。
-
共1页/2条