碧波液压网 欢迎你,游客。 登录 注册

LMD-KICA滚动轴承信号特征提取方法研究

作者: 张炎磊 张培杰 方雁衡 董辛旻 来源:机械设计与制造 日期: 2025-02-13 人气:147
LMD-KICA滚动轴承信号特征提取方法研究
在实际工程机械所产生的滚动轴承故障信号十分复杂,有效的故障信号和特征信息极易被噪声信号所干扰,针对工程中振动信号的特点,提出了一种基于局部均值分解(LMD)结合核独立分量分析(KICA)的方法提取故障信号特征。首先将源信号进行LMD分解,根据相关系数准则提取相关程度高的PF分量并构建新信号,对新构建的故障信号运用KICA进行噪声分离,进而获得故障信号特征。先通过构造信号仿真分析方法有效性,再通过西储大学轴承实验数据对比分析,验证该方法适用于提取滚动轴承的故障特征。

LMD-MOMEDA滚动轴承故障特征提取方法研究

作者: 徐向阳 董辛旻 王前江 李伟 来源:机械设计与制造 日期: 2025-02-06 人气:162
LMD-MOMEDA滚动轴承故障特征提取方法研究
由于滚动轴承的故障信号在强噪声的背景之下很容易被淹没,并且具有非线性、非平稳等特点致使故障特征提取困难,在分析了滚动轴承振动信号的特点后提出了一种将局部均值分解(LMD)与多点最优最小熵解卷积(MOMEDA)相结合的故障特征提取方法。首先将滚动轴承的故障信号进行LMD分解,得到一系列的PF分量;然后根据相关系数准则对相关程度较高的PF分量进行重构,用MOMEDA方法对重构后的信号进行降噪,提取故障特征。并通过实验验证了该方法的有效性。

基于改进LMD与BP神经网络的变速箱故障诊断

作者: 汪杰强 刘志军 黄若琼 魏少华 来源:机械传动 日期: 2025-01-10 人气:91
基于改进LMD与BP神经网络的变速箱故障诊断
针对军用装甲车变速箱工作环境恶劣、故障模式难以识别的问题,在现有方法基础上,将噪声辅助分析方法、局部均值分解(LMD)方法和BP神经网络方法相结合,应用于装甲车变速箱故障诊断中。首先,在自行搭建的实验台上采集变速箱正常、轴承间隙故障、外环压痕、齿轮断齿4种典型状态下的振动信号;然后,采用噪声辅助LMD方法对信号进行分解,将信号前8个PF分量进行能量特征值提取,将提取的特征值作为BP神经网络的输入量,根据输出结果识别变速箱的故障类型。结果表明,该方法能有效应用于军用装甲车变速箱故障诊断,诊断正确率达到92. 5%。研究为其他特种变速箱诊断提供了一种有效的参考途径,有一定工程实用价值。
    共1页/3条